Downloads
Download
Additional Files
Download - Supplementary Materials


This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Assessing Nutrient Dynamics in Vitis vinifera L. cv. Maturana Blanca: The Role of Training System and Irrigation Strategy
Miguel Puelles 1, Pedro Balda 2, Ignacio Martín 1, David Labarga 1, Andreu Mairata 1, Fernando Martínez de Toda 1 and Alicia Pou 1,*
1 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain
2 Department of Food and Agriculture, Scientific and Technology Complex, Universidad de La Rioja, c/Madre de Dios, 51, 26006 Logroño, Spain
* Correspondence: alicia.pou@icvv.es
Received: 20 September 2024; Revised: 10 March 2025; Accepted: 12 March 2025; Published: 18 March 2025
Abstract: Global climate change presents significant challenges to viticulture, particularly regarding water availability and nutrient management. This study delves into the combined effects of vertical cordon (VC) and gobelet (G) training systems, alongside deficit irrigation (DI) and rainfed (R) regimes, on the physiology, nutrient dynamics, and productivity of Vitis vinifera L. cv. Maturana Blanca. The research uncovers that VC training increases vegetative growth and yield through enhanced light exposure and bud load, but careful nutrient management is required to address reduced phosphorus, iron, and zinc levels. DI effectively mitigates water stress, enhances intrinsic and instantaneous water use efficiency, and impacts nutrient uptake, notably increasing calcium and manganese levels while reducing nitrogen. Leaf blade and petiole analyses demonstrated complementary roles in understanding nutrient transport and physiological responses, with petioles reflecting short-term changes and leaf blades capturing long-term trends. The findings underscore the potential of combining VC training and DI to optimize vineyard resilience and productivity under climate stress while maintaining a balanced vegetative and reproductive growth ratio essential for high-quality grape production.
Keywords:
grapevine climate change vertical cordon leaf blade petioleReferences
- Allen RG, Pereira LS, Raes D, & Smith M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Food and Agriculture Organization of the United Nations.
- Azeem M, Riaz A, Chaudhary A, Hayat R, Hussain Q, Tahir M, & Imran M. (2015). Microbial phytase activity and their role in organic P mineralization. Archives of Agronomy and Soil Science, 61(6), 751–766. https://doi.org/10.1080/03650340.2014.963796
- Balda P, & Martínez de Toda F. (2017). Variedades minoritarias de vid en La Rioja. Consejería de Agricultura, Ganadería y Medio Ambiente.
- Benito A, Romero I, Domínguez N, García-Escudero E, & Martín I. (2013). Leaf blade and petiole analysis for nutrient diagnosis in Vitis viniferaL. cv. Garnacha tinta. Australian Journal of Grape and Wine Research, 19(2), 285–298. https://doi.org/10.1111/ajgw.12022
- Brandt M, Scheidweiler M, Rauhut D, Patz C-D, Will F, Zorn H, & Stoll M. (2019). The influence of temperature and solar radiation on phenols in berry skin and maturity parameters of Vitis vinifera L. cv. Riesling: This article is published in cooperation with the 21th GIESCO International Meeting, June 23-28 2019, Thessaloniki, Greece. OENO One, 53(2). https://doi.org/10.20870/oeno-one.2019.53.2.2424
- Bravdo B, Hepner Y, Loinger C, Cohen S, & Tabacman H. (1985). Effect of Crop Level and Crop Level on Growth, Yield and Wine Composition, and Quality of Cabernet Sauvignon. American Journal of Enology and Viticulture, 36(2), 132–139.
- Cervera MT, Cabezas JA, Sancha JC, Martínez De Toda F, & Martínez-Zapater JM. (1998). Application of AFLPS to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theoretical and Applied Genetics, 97(1–2), 51–59. https://doi.org/10.1007/s001220050866
- Chaves MM, Santos TP, Souza CR, Ortuño MF, Rodrigues ML, Lopes CM, Maroco JP, & Pereira JS. (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 150(2), 237–252. https://doi.org/10.1111/j.1744-7348.2006.00123.x
- Christensen P. (1984). Nutrient Level Comparisons of Leaf Petioles and Blades in Twenty-Six Grape Cultivars Over Three Years (1979 through 1981). American Journal of Enology and Viticulture, 35(3), 124–133. https://doi.org/10.5344/ajev.1984.35.3.124
- Clingeleffer PR. (1989). Update: Minimal pruning of cordon trained vines (MPCT). Austr. Grape Grower and Winemaker, 304, 78–83.
- Davis JG. (1995). Impact of time of day and time since irrigation on cotton leaf blade and petiole nutrient concentrations. Communications in Soil Science and Plant Analysis, 26(15–16), 2351–2360. https://doi.org/10.1080/00103629509369452
- Dayer S, Peña JP, Gindro K, Torregrosa L, Voinesco F, Martínez L, Prieto JA, & Zufferey V. (2017). Changes in leaf stomatal conductance, petiole hydraulics and vessel morphology in grapevine (Vitis vinifera cv. Chasselas) under different light and irrigation regimes. Functional Plant Biology, 44(7), 679–693.
- de Rességuier L, Pieri P, Petitjean T, Mary S, & Van Leeuwen C. (2023a). Temperature variation linked to trellis height: an opportunity for adaptation to climate change? IVES Technical Reviews, Vine and Wine, 2–3. https://doi.org/10.20870/ives-tr.2023.7672
- de Rességuier L, Pieri P, Séverine M, Pons R, Petitjean T, & Van Leeuwen C. (2023b). Characterisation of the vertical temperature gradient in the canopy reveals increased trunk height to be a potential adaptation to climate change. Oeno One, 57, 41–53.
- de Souza CR, Maroco JP, dos Santos TP, Rodrigues ML, Lopes CM, Pereira JS, & Chaves MM. (2005). Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate. Journal of Experimental Botany, 56(418), 2163–2172. https://doi.org/10.1093/jxb/eri216
- Dequin S, Escudier J-L, Bely M, Noble J, Albertin W, Masneuf-Pomarède I, Marullo P, Salmon J-M, & Sablayrolles JM. (2017). How to adapt winemaking practices to modified grape composition under climate change conditions. OENO One, 51(2), 205–214. https://doi.org/10.20870/oeno-one.2017.51.2.1584
- Dry PR, & Loveys BR. (1998). Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Australian Journal of Grape and Wine Research, 4(3), 140–148. https://doi.org/10.1111/j.1755-0238.1998.tb00143.x
- Duff S, Sarath G, & Plaxton W. (1994). The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 90(4), 791–800. https://doi.org/10.1111/J.1399-3054.1994.TB02539.X
- Düring H. (1988). CO2 assimilation and photorespiration of grapevine leaves : responses to light and drought. Vitis, 27, 199–208.
- Escalona JM, Pou A, Tortosa I, Hernández-Montes E, Tomás M, Martorell S, Bota J, & Medrano H. (2016). Using whole-plant chambers to estimate carbon and water fluxes in field-grown grapevines. Theoretical and Experimental Plant Physiology, 28(2), 241–254. https://doi.org/10.1007/s40626-016-0073-7
- Escalona L, Flexas J, & Medrano H. (2000). Comparison of heat balance and gas exchange methods to measure transpiration in irrigated and water stressed grapevines. Acta Hortic, 256, 145–156. https://doi.org/10.17660/ActaHortic.2000.526.11
- Esteves E, Locatelli G, Bou NA, & Ferrarezi R. (2021). Sap Analysis: A Powerful Tool for Monitoring Plant Nutrition. Horticulturae, 7(11), 426. https://doi.org/10.3390/HORTICULTURAE7110426
- Etheridge RD, Pesti GM, & Foster EH. (1998). A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Animal Feed Science and Technology, 73(1), 21–28. https://doi.org/10.1016/S0377-8401(98)00136-9
- Flexas J, Bota J, Escalona JM, Sampol B, & Medrano H. (2002). Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29(4), 461–471. https://doi.org/10.1071/PP01119
- Fraga H. (2020). Climate Change: A New Challenge for the Winemaking Sector. Agronomy, 10 (10), 1465. https://doi.org/10.3390/agronomy10101465
- Fraga H, García de Cortázar Atauri I, & Santos JA. (2018). Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management, 196, 66–74. https://doi.org/10.1016/j.agwat.2017.10.023
- Fráguas JC, Miele A, & Silva EB. (2003). Grapevine nutritional diagnosis methods for the «Serra Gauchá» viticultural region, Brazil. Journal International Des Sciences de La Vigne et Du Vin, 37(1), 15–21. https://doi.org/10.20870/oeno-one.2003.37.1.1683
- Gambetta J, Holzapfel B, & Schmidtke L. (2019). Climate change: What is the best time to remove leaves to minimise sunburn?: Australian and New Zealand Grapegrower and Winemaker, 661, 28.
- Gambetta JM, Holzapfel BP, Stoll M, & Friedel M. (2021). Sunburn in Grapes: A Review. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.604691
- García-Escudero E, Romero I, Benito A, Domínguez N, & Martín I. (2013). Reference Levels for Leaf Nutrient Diagnosis of cv. Tempranillo Grapevine in the Rioja Appellation. Communications in Soil Science and Plant Analysis, 44(1–4), 645–654. https://doi.org/10.1080/00103624.2013.745385
- Gärtel W. (1996). Grapes. In W. F. Bennet (Ed.), Nutrient deficiencies and toxicities in crop plants (pp. 177–183). APS Press.
- Gilda-diana B, & Maria DA. (2017). Study to assess the presence of micro- , macroelements and heavy metals within the soil – grapevine plants system. Journal of Horticulture, Forestry and Biotechnology, 21(2), 97–102.
- Guilpart N, Metay A, & Gary C. (2014). Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. European Journal of Agronomy, 54, 9–20. https://doi.org/10.1016/j.eja.2013.11.002
- Gutiérrez-Gamboa G, Zheng W, & Martínez de Toda F. (2020). Strategies in vineyard establishment to face global warming in viticulture: a mini review. Journal of the Science of Food and Agriculture, 101(4), 1261–1269. https://doi.org/10.1002/jsfa.10813
- Gutiérrez-Gamboa G, Zheng W, & Martínez de Toda F. (2021). Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139. https://doi.org/10.1016/j.foodres.2020.109946
- Hoenig M, Baeten H, Vanhentenrijk S, Vassileva E, & Quevauviller P. (1998). Critical discussion on the need for an efficient mineralization procedure for the analysis of plant material by atomic spectrometric methods. Analytica Chimica Acta, 358(1), 85–94. https://doi.org/10.1016/S0003-2670(97)00594-1
- Ippolito JA, Bjorneberg DL, Blecker SW, & Massey MS. (2019). Mechanisms Responsible for Soil Phosphorus Availability Differences between Sprinkler and Furrow Irrigation. Journal of Environmental Quality, 48(5), 1370–1379. https://doi.org/10.2134/jeq2019.01.0016
- Jones G, White M, Cooper O, & Storchmann K. (2005). Climate Change and Global Wine Quality. Climatic Change, 73, 319–343. https://doi.org/10.1007/S10584-005-4704-2
- Kassambara A. (2019). rstatix: Pipe-friendly framework for basic statistical tests. CRAN: Contributed Packages.
- Keller M. (2005). Deficit Irrigation and Vine Mineral Nutrition. American Journal of Enology and Viticulture. https://doi.org/10.5344/ajev.2005.56.3.267
- Keller M. (2020). The science of grapevines. Academic Press.
- Keller M, Mills LJ, Wample RL, & Spayd SE. (2004). Crop load management in concord grapes using different pruning techniques. American Journal of Enology and Viticulture, 55(1), 35–50.
- Keller M, Smithyman RP, & Mills LJ. (2008). Interactive Effects of Deficit Irrigation and Crop Load on Cabernet Sauvignon in an Arid Climate. American Journal of Enology and Viticulture, 59(3), 221 LP – 234. https://doi.org/10.5344/ajev.2008.59.3.221
- Kliewer WM, & Dokoozlian NK. (2005). Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. American Journal of Enology and Viticulture, 56(2), 170–181.
- Koundouras S, Tsialtas IT, Zioziou E, & Nikolaou N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems & Environment, 128(1), 86–96. https://doi.org/10.1016/j.agee.2008.05.006
- Kramer PJ, & Boyer JS. (1995). Water relations of plants and soils. Academic Press.
- Liu C, Dang X, Mayes MA, Chen L, & Zhang Y. (2017). Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone. PLoS ONE, 12(11), 1–16. https://doi.org/10.1371/journal.pone.0188361
- Longbottom M. (2009). Managing grapevine nutrition in a changing environment. The Australian Wine Research Institute Ltd.
- Mairata A, Labarga D, Puelles M, Rivacoba L, Martín I, Portu J, & Pou A. (2024). Impact of organic mulches on grapevine health , growth and grape composition in nutrient-poor vineyard soils. 58, 1–14.
- Martinez De Toda F. (2011). Claves de la viticultura de calidad. Mundi-Prensa.
- Martínez De Toda F, Balda P, & Sancha JC. (2012). Preservation of intravarietal diversity in clonal and sanitary pre-selection for a minority variety in danger of extinction: Maturana blanca. Journal International Des Sciences de La Vigne et Du Vin, 46(2), 123–130. https://doi.org/10.20870/oeno-one.2012.46.2.1511
- Martínez De Toda F, & Sancha JC. (1997). Ampelographical characterization of white Vitis vinifera L. cultivars preserved in Rioja. Bulletin de l’OIV, 70(799/800), 688–702.
- Mcgrath JM, & Lobell DB. (2013). Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant, Cell and Environment, 36(3), 697–705. https://doi.org/10.1111/pce.12007
- Medrano H, Escalona JM, Bota J, Gulías J, & Flexas J. (2002). Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Annals of Botany, 89(7), 895–905. https://doi.org/10.1093/aob/mcf079
- Miller D, Howell G, & Flore J. (1996). Effect of Shoot Number on Potted Grapevines: I. Canopy Development and Morphology. American Journal of Enology and Viticulture. https://doi.org/10.5344/ajev.1996.47.3.244
- Mirás-Avalos J, Buesa I, Llácer E, Jiménez-Bello M, Risco D, Castel J, & Intrigliolo D. (2017). Water Versus Source–Sink Relationships in a Semiarid Tempranillo Vineyard: Vine Performance and Fruit Composition. American Journal of Enology and Viticulture, 68, 11–22. https://doi.org/10.5344/ajev.2016.16026
- Morales-Castilla I, García de Cortázar-Atauri I, Cook BI, Lacombe T, Parker A, van Leeuwen C, Nicholas KA, & Wolkovich EM. (2020). Diversity buffers winegrowing regions from climate change losses. Proceedings of the National Academy of Sciences, 117(6), 2864–2869. https://doi.org/10.1073/pnas.1906731117
- Mourão Filho F de AA. (2004). DRIS: concepts and applications on nutritional diagnosis in fruit crops. Scientia Agricola, 61(5), 550–560. https://doi.org/10.1590/s0103-90162004000500015
- Mpelasoka BS, Schachtman DP, Treeby MT, & Thomas MR. (2003). A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Australian Journal of Grape and Wine Research, 9(3), 154–168. https://doi.org/10.1111/j.1755-0238.2003.tb00265.x
- Naor A, & Bravdo B. (2000). Irrigation and water relations interactions in grapevines. Acta Horticulturae, 526, 109–114. https://doi.org/10.17660/ActaHortic.2000.526.8
- Pérez-Álvarez EP, Intrigliolo Molina DS, Vivaldi GA, García-Esparza MJ, Lizama V, & Álvarez I. (2021). Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agricultural Water Management, 248, 106772. https://doi.org/10.1016/j.agwat.2021.106772
- Plett D, Ranathunge K, Melino V, Kuya N, Uga Y, & Kronzucker H. (2020). The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. Journal of Experimental Botany, 71, 4452–4468. https://doi.org/10.1093/jxb/eraa049
- Pou A, Medrano H, Tomàs M, Martorell S, Ribas-Carbó M, & Flexas J. (2012). Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. https://doi.org/10.1007/s11104-012-1206-7
- Proffit T, & Campbell-Clause J. (2012). Managing grapevine nutrition and vineyard soil health. Wines of Western Australia.
- Puelles M, Balda P, Labarga D, Mairata A, García-Escudero E, Guadalupe Z, Ayestarán B, & Pou A. (2022). Utilization of Vertical Cordon System to Improve Source-Sink Balance and Wine Aroma under Water Shortage Conditions of Maturana Blanca. Agronomy, 12(6). https://doi.org/10.3390/agronomy12061373
- Rengel, Z., Cakmak, I., & White, P. J. (Eds.). (2023). Marschner’s Mineral Nutrition of Plants. Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00023-X
- Robinson J. (1992). Grapevine nutrition. In B. G. C. and P. R. Dry (Ed.), Viticulture. Vol 2: Practices (pp. 178–208). Winetitles.
- Romero I, García-Escudero E, & Martín I. (2010). Effects of Leaf Position on Blade and Petiole Mineral Nutrient Concentration of Tempranillo Grapevine (Vitis vinifera L.). American Journal of Enology and Viticulture, 61(4), 544–550. https://doi.org/10.5344/ajev.2010.09091
- Romero I, García-Escudero E, & Martín I. (2013). Leaf blade versus petiole analysis for nutritional diagnosis of Vitis vinifera L. cv. Tempranillo. American Journal of Enology and Viticulture, 64(1), 50–64. https://doi.org/10.5344/ajev.2012.11004
- Sanchez-de-Miguel P, Baeza P, Junquera P, & Lissarrague JR. (2010). Vegetative Development: Total Leaf Area and Surface Area Indexes. In S. Delrot, H. Medrano, E. Or, L. Bavaresco, & S. Grando (Eds.), Methodologies and Results in Grapevine Research (pp. 31–44). Springer Netherlands.
- Sanchez-de-Miguel P, Junquera P, De la Fuente M, Jimenez L, Linares R, Baeza P, & Lissarrague JR. (2011). Estimation of vineyard leaf area by linear regression. Spanish Journal of Agricultural Research, 9(1), 202–212. https://doi.org/10.5424/sjar/20110901-354-10
- Santos JA, Fraga H, Malheiro AC, Moutinho-Pereira J, Dinis L-T, Correia C, Moriondo M, Leolini L, Dibari C, Costafreda-Aumedes S, Kartschall T, Menz C, Molitor D, Junk J, Beyer M, & Schultz HR. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences,10(9), 3092. https://doi.org/10.3390/app10093092
- Schreiner RP, & Scagel CF. (2017). Leaf Blade versus Petiole Nutrient Tests as Predictors of Nitrogen, Phosphorus, and Potassium Status of ‘Pinot Noir’ Grapevines. HortScience Horts, 52(1), 174–184. https://doi.org/10.21273/HORTSCI11405-16
- Schultz HR, & Stoll M. (2015). Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Environmentally Sustainable Viticulture: Practices and Practicality, 209–258. https://doi.org/10.1201/b18226
- Shen C, Shi X, Xie C, Li Y, Yang H, Mei X, Xu Y, & Dong C. (2019). The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. Journal of Plant Physiology, 232, 320–333. https://doi.org/10.1016/j.jplph.2018.11.025
- Smart RE, & Coombe BG. (1983). Water relations of grapevines. In TT Kozlowski (Ed.), Water deficits and plant growth. Vol. VII. Additional woody crop plants (pp. 137–196). Academic Press.
- Smart RE, & Robinson M. (1991). Sunlight into Wine: A Handbook for Winegrape Canopy Management. Winetitles.
- Spangenberg JE, Schweizer M, & Zufferey V. (2020). Shifts in carbon and nitrogen stable isotope composition and epicuticular lipids in leaves reflect early water-stress in vineyards. Science of the Total Environment, 739, 140343. https://doi.org/10.1016/j.scitotenv.2020.140343
- Stockdale EA, Goulding KWT, George TS, & Murphy D V. (2013). Soil fertility. In Soil Conditions and Plant Growth (pp. 49–85). https://doi.org/10.1002/9781118337295.ch3
- Tarara JM, & Spayd S. (2005). Tackling “sunburn” in red wine grapes through temperature and sunlight exposure. The Good Fruit Grower, 56, 40–41.
- Tomkins M. (2023). Towards modelling emergence in plant systems. Quantitative Plant Biology, 4, e6. https://doi.org/10.1017/qpb.2023.6
- Torres N, Yu R, Martínez-Lüscher J, Kostaki E, & Kurtural SK. (2021). Application of Fractions of Crop Evapotranspiration Affects Carbon Partitioning of Grapevine Differentially in a Hot Climate. Frontiers in Plant Science, 12, 1–15. https://doi.org/10.3389/fpls.2021.633600
- Tscholl S, Candiago S, Marsoner T, Fraga H, Giupponi C, & Egarter Vigl L. (2024). Climate resilience of European wine regions. Nature Communications, 15(1), 6254. https://doi.org/10.1038/s41467-024-50549-w
- Valentini G, Pastore C, Allegro G, Mazzoleni R, Chinnici F, & Filippetti I. (2022). Vine Physiology, Yield Parameters and Berry Composition of Sangiovese Grape under Two Different Canopy Shapes and Irrigation Regimes. Agronomy, 12(8), 1967. https://doi.org/10.3390/agronomy12081967
- Van Leeuwen C, & Seguin G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17(1), 1–10. https://doi.org/10.1080/09571260600633135
- van Leeuwen C, Sgubin G, Bois B, Ollat N, Swingedouw D, Zito S, & Gambetta GA. (2024). Climate change impacts and adaptations of wine production. Nature Reviews Earth and Environment, 5, 258–275. https://doi.org/10.1038/s43017-024-00521-5
- van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, & Gaudillére JP. (2009). Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes? Journal International Des Sciences de La Vigne et Du Vin, 43(3), 121–134. https://doi.org/10.20870/oeno-one.2009.43.3.798
- Vanden Heuvel JE, Proctor JTA, Sullivan JA, & Fisher KH. (2004). Influence of training/trellising system and rootstock selection on productivity and fruit composition of Chardonnay and Cabernet franc grapevines in Ontario, Canada. American Journal of Enology and Viticulture, 55(3), 253–264.
- Verdenal T, Zufferey V, Dienes-Nagy A, Bourdin G, Gindro K, Viret O, & Spring J-L. (2019). Timing and Intensity of Grapevine Defoliation: An Extensive Overview on Five Cultivars in Switzerland. American Journal of Enology and Viticulture, 70(4), 427–434. https://doi.org/10.5344/ajev.2019.19002
- Wolpert JA, & Anderson JM. (2007). Rootstock influence on grapevine nutrition: minimizing nutrient losses to the environment. Proceedings of the California Plant and Soil Conference, 77–83.
- Yuste J. (2002). Podas de formación y producción en distintos sistemas de conducción. Alternativas de poda en cordón vertical, vaso y espaldera. Ponencias Del II Curso de Viticultura y Enología En La Ribera Del Duero, 11–21.
- Zörb C, Senbayram M, & Peiter E. (2014). Potassium in agriculture--status and perspectives. Journal of Plant Physiology, 171(9), 656–669. https://doi.org/10.1016/j.jplph.2013.08.008