Downloads

Additional Files

Álvarez, K. M., Bertero, H. D., Paytas, M. J., & Ploschuk, E. L. Heat Stress Reduces Yield Through a Negative Effect on Radiation Use Efficiency during the Reproductive Phase in Cotton (Gossypium hirsutum L.) under Different Source Availabilities. Plant Ecophysiology. 2025. doi: https://doi.org/10.53941/plantecophys.2025.100003

Article

Heat Stress Reduces Yield Through a Negative Effect on Radiation Use Efficiency during the Reproductive Phase in Cotton (Gossypium hirsutum L.) under Different Source Availabilities

Kelly Mercado Álvarez 1, H. Daniel Bertero 1, Marcelo J. Paytas 2 and Edmundo L. Ploschuk 1,*

1 Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales. Av. San Martín 4453, Buenos Aires 1417, Argentina

2 EEA INTA Reconquista, Ruta 11 Km 773, Reconquista 3560, Santa Fe, Argentina

* Correspondence: ploschuk@agro.uba.ar; Tel.: +54-11-52870730

Received: 30 September 2024; Revised: 5 January 2025; Accepted: 24 February 2025; Published: 28 February 2025

Abstract: Cotton is frequently exposed to high temperatures during the reproductive stage, which can negatively impact productivity. While previous research has shown that photosynthesis can decrease under heat stress, there is limited information on the effects of heat stress during the reproductive phase on crop variables such as radiation capture, use efficiency, and yield. This study aimed to: (i) assess the effect of heat stress on cumulative intercepted PAR radiation (IRcum), radiation use efficiency (RUE), harvest index (HI), and yield, and (ii) evaluate potential interactions between heat stress and source-sink relationships during the reproductive phase. Two field experiments were conducted, with heating treatments applied before and after flowering, and controls without temperature manipulation. In Experiment 1, two genotypes with contrasting growth cycles were compared, while Experiment 2 examined intact versus defoliated plants. Heat stress significantly reduced yield and HI, particularly during post-flowering. Source reduction (defoliation) further reduced yield, independent of temperature. Although IRcum was unaffected by treatments, RUE dropped sharply under heat stress in intact plants and was similarly low in defoliated plants under both control and heated conditions. These results suggest that heat stress, especially during post-flowering, exacerbates the effects on cotton productivity by reducing both total plant dry weight and HI. The study highlights that the relationship between RUE and yield strongly depends on the specific limiting factors, such as heat stress or source restrictions.

Keywords:

cotton heat stress radiation interception efficiency radiation use efficiency harvest index yield

References

  1. Abro AA, Anwar M, Javwad MU, Zhang M, Liu F, Jiménez-Ballesta R, Salama EAA, & Ahmed MAA. (2023). Morphological and physio-biochemical responses under heat stress in cotton: Overview. Biotechnology Reports, 40, e00813. https://doi.org/10.1016/j.btre.2023.e00813
  2. Andrade F, Sadras V, Vega C, & Echarte L. (2005). Physiological Determinants of Crop Growth and Yield in Maize, Sunflower and Soybean. Journal of Crop Improvement, 14, 51–101. https://doi.org/10.1300/J411v14n01_05
  3. Baker DN, & Baker JT. (2010). Cotton Source/Sink Relationships. In JM Stewart, DM Oosterhuis, JJ Heitholt, & JR Mauney (Eds.), Physiology of Cotton (pp. 80–96). Springer Netherlands. https://doi.org/10.1007/978-90-481-3195-2_8
  4. Bhattacharya A. (2019). Effect of High-Temperature Stress on Crop Productivity. In Effect of High Temperature on Crop Productivity and Metabolism of Macro Molecules (pp. 1–114). Elsevier. https://doi.org/10.1016/b978-0-12-817562-0.00001-x
  5. Bita CE, & Gerats T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. https://doi.org/10.3389/fpls.2013.00273
  6. Burke JJ, & Wanjura DF. (2010). Plant Responses to Temperature Extremes. In JM Stewart, DM Oosterhuis, JJ Heitholt, & JR Mauney (Eds.), Physiology of Cotton (pp. 123-128). Springer Netherlands. https://doi.org/10.1007/978-90-481-3195-2_12
  7. Casuso M, Tarragó J, & Galdeano MJ. (2016). Producción de algodón: Recomendaciones para el manejo de plagas y de cultivo. INTA Digital.
  8. Christiansen MN, & Lewis CP. (1982). Breeding Plants for Less Favourable Environments. Wiley Interscience.
  9. Cicchino M, Rattalino Edreira JI, & Otegui ME. (2010). Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop Science, 50(4), 1431. https://doi.org/10.2135/cropsci2009.07.0400
  10. Conaty WC, Mahan JR, Neilsen JE, Tan DKY, Yeates SJ, & Sutton BG. (2015). The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Research, 183, 329–341. https://doi.org/10.1016/j.fcr.2015.08.010
  11. Dauzat J, Clouvel P, Luquet D, & Martin P. (2008). Using Virtual Plants to Analyse the Light-foraging Efficiency of a Low-density Cotton Crop. Annals of Botany, 101, 1153–1166. https://doi.org/10.1093/aob/mcm316.
  12. Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, & Du X. (2024). An insight into heat stress response and adaptive mechanism in cotton. Journal of Plant Physiology, 302, 154324. https://doi.org/10.1016/J.JPLPH.2024.154324
  13. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, & Robledo CW. (2011). InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar (versión 24).
  14. Eaton FM, & Ergle DR. (1954). Effects of Shade and Partial Defoliation on Carbohydrate Levels and the Growth, Fruiting and Fiber Properties of Cotton Plants. Plant Physiology, 29(1), 39–49.
  15. Echer FR, Oosterhuis DM, Loka DA, & Rosolem CA. (2014). High Night Temperatures During the Floral Bud Stage Increase the Abscission of Reproductive Structures in Cotton. Journal of Agronomy and Crop Science, 200, 191–198. https://doi.org/10.1111/jac.12056
  16. Ferrero-Serrano Á, Cantos C, & Assmann S. (2019). The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harbor Perspectives in Biology, 11, a034645. https://doi.org/10.1101/cshperspect.a034645
  17. Grundy PR, Yeates SJ, & Bell KL. (2020). Cotton production during the tropical monsoon season. I – The influence of variable radiation on boll loss, compensation and yield. Field Crops Research, 254, 107790. https://doi.org/10.1016/j.fcr.2020.107790
  18. Hearn AB. (1976). Response of cotton to nitrogen and water in a tropical environment. III. Fibre quality. The Journal of Agricultural Science, 86, 257–269. https://doi.org/10.1017/S002185960005471X.
  19. Hodges T. (1991). Chapter 3: Temperature and water stress–Effects on phenology. In Hodges T. (Ed.) Predicting crop phenology (pp. 7–13). CRC Press.
  20. Hu W, Snider JL, Wang H, Zhou Z, Chastain DR, Whitaker J, Perry CD, & Bourland FM. (2018). Water-induced variation in yield and quality can be explained by altered yield component contributions in field-grown cotton. Field Crops Research, 224, 139–147. https://doi.org/10.1016/J.FCR.2018.05.013
  21. Lambers H, Chapin FS, & Pons TL. (2008). Plant Physiological Ecology. Springer New York. https://doi.org/10.1007/978-0-387-78341-3
  22. Liu Y, Dai Y, Liu Z, Sun S, Wu S, Du J, Chen Y, Zhang X, Chen D, & Chen Y. (2024). Boll/leaf ratio improves the source–sink relationship and lint yield during the boll setting stage of cotton. Field Crops Research, 310, 109342. https://doi.org/10.1016/j.fcr.2024.109342
  23. Loka DA, & Oosterhuis DM. (2016). Increased Night Temperatures During Cotton’s Early Reproductive Stage Affect Leaf Physiology and Flower Bud Carbohydrate Content Decreasing Flower Bud Retention. Journal of Agronomy and Crop Science, 202, 518–529. https://doi.org/10.1111/jac.12170
  24. Loka DA, Oosterhuis DM, Baxevanos D, Noulas C, & Hu W. (2020). Single and combined effects of heat and water stress and recovery on cotton (Gossypium hirsutum L.) leaf physiology and sucrose metabolism. Plant Physiology and Biochemistry, 148, 166–179. https://doi.org/10.1016/j.plaphy.2020.01.015
  25. Lv F, Liu J, Ma Y, Chen J, Keyoumu A, Wang Y, Chen B, Meng Y, & Zhou Z. (2013). Effect of Shading on Cotton Yield and Quality on Different Fruiting Branches. Crop Science, 53, 2670–2678. https://doi.org/10.2135/cropsci2013.03.0170.
  26. Majeed S, Rana AI, Mubarik MS, Atif RM, Yang SH, Chung G, Jia YH, Du X, Hinze L, & Azhar MT. (2021). Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy, 11, 1825. https://doi.org/10.3390/agronomy11091825
  27. Mercado Álvarez K, Bertero HD, Paytas MJ, & Ploschuk EL. (2022). Mesophyll conductance modulates photosynthetic rate in cotton crops exposed to heat stress under field conditions. Journal of Agronomy and Crop Science, 208, 53–64. https://doi.org/10.1111/jac.12536
  28. Milroy SP, & Bange MP. (2013). Reduction in radiation use efficiency of cotton (Gossypium hirsutum L.) under repeated transient waterlogging in the field. Field Crops Research, 140, 51–58. https://doi.org/10.1016/j.fcr.2012.10.016
  29. Naylor REL. (2012). Crop Ecology: Productivity and Management in Agricultural Systems (2nd edition), by D. J. Connor, R. S. Loomis & K. G. Cassman. xii+568 pp. Cambridge, UK: Cambridge University Press (2011). £38.00. ISBN: 9780521744034. The Journal of Agricultural Science, 150(2), 285. https://doi.org/10.1017/S0021859611000852
  30. Paytas MJ, Scarpin GJ, Mercado Álvarez K, & Ploschuk EL. (2023). Algodón. Capítulo 3.2. In E. B. de la Fuente, R. L. Benech-Arnold, A. Gil, A. G. Kantolic, M. Lopez Pereira, E. L. Ploschuk, D. M. Sorlino, & D. F. Wassner (Eds.), Producción y Usos de Cultivos Industriales (2013th ed., p. En Prensa). Editorial Facultad de Agronomía.
  31. Pettigrew WT. (2016) Cultivar variation in cotton photosynthetic performance under different temperature regimes. Photosynthetica, 54, 502–507. https://doi.org/10.1007/s11099-016-0208-8.
  32. Phillips JB. (2012). Cotton Response to High Temperature Stress During Reproductive Development. [Master's Thesis, University of Arkansas]. ScholarWorks@UARK. https://scholarworks.uark.edu/etd/394
  33. Pokhrel A, Snider JL, Virk S, Sintim HY, Hand LC, Vellidis G, Parkash V, Chalise DP, & Lee JM. (2023). Quantifying physiological contributions to nitrogen-induced yield variation in field-grown cotton. Field Crops Research, 299, 108976. https://doi.org/10.1016/J.FCR.2023.108976
  34. Rattalino Edreira JI, & Otegui ME. (2012). Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crops Research, 130, 87–98. https://doi.org/10.1016/j.fcr.2012.02.009
  35. Reddy KR, Hodges HF, & Reddy VR. (1992). Temperature Effects on Cotton Fruit Retention. Agronomy Journal, 84(1), 26–30. https://doi.org/10.2134/agronj1992.00021962008400010006x
  36. Reddy VR, Reddy KR, & Hodges HF. (1995). Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 41(1), 13–23.
  37. Saini DK, Impa SM, McCallister D, Patil GB, Abidi N, Ritchie G, Jaconis SY, & Jagadish KSV. (2023). High day and night temperatures impact on cotton yield and quality—current status and future research direction. Journal of Cotton Research, 6(1), 16. https://doi.org/10.1186/s42397-023-00154-x
  38. Sandaña P, & Kalazich J. (2015). Ecophysiological determinants of tuber yield as affected by potato genotype and phosphorus availability. Field Crops Research, 180, 21–28. https://doi.org/10.1016/J.FCR.2015.05.005
  39. Scarpin GJ, Cereijo AE, Dileo PN, Winkler HHM, Muchut RJ, Lorenzini FG, Roeschlin RA, & Paytas M. (2023). Delayed harvest time affects strength and color parameters in cotton fibers. Agronomy Journal, 115(2), 583–594. https://doi.org/10.1002/agj2.21295
  40. Scarpin GJ, Dileo PN, Winkler HM, Cereijo AE, Lorenzini FG, Roeschlin RA, Muchut RJ, Acuña C, & Paytas M. (2022). Genetic progress in cotton lint and yield components in Argentina. Field Crops Research, 275, 108322. https://doi.org/10.1016/j.fcr.2021.108322
  41. Seneviratne SI, Rogelj J, Séférian R, Wartenburger R, Allen MR, Cain M, Millar RJ, Ebi KL, Ellis N, Hoegh-Guldberg O, Payne AJ, Schleussner CF, Tschakert P, & Warren RF. (2018). The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature, 558(7708), 41–49. https://doi.org/10.1038/s41586-018-0181-4
  42. Siegfried J, Adams CB, Rajan N, Hague S, Schnell R, & Hardin R. (2023). Combining a cotton 'Boll Area Index' with in-season unmanned aerial multispectral and thermal imagery for yield estimation. Field Crops Research, 291, 108765. https://doi.org/10.1016/j.fcr.2022.108765
  43. Sinclair TR, & Muchow RC. (1999). Radiation Use Efficiency (D. L. B. T.-A. in A. Sparks (ed.); Vol. 65, pp. 215–265). Academic Press. https://doi.org/10.1016/S0065-2113(08)60914-1
  44. Singh J, Gamble AV, Brown S, Campbell BT, Jenkins J, Koebernick J, Bartley PC, & Sanz-Saez A. (2023). 65 years of cotton lint yield progress in the USA: Uncovering key influential yield components. Field Crops Research, 302, 109058. https://doi.org/10.1016/j.fcr.2023.109058
  45. Snider JL, & Oosterhuis DM. (2012). Heat stress and pollen-pistil interactions. In D. M. Oosterhuis & J. T. Cothren (Eds.), Flowering and fruiting in cotton (p. 245). The Cotton Foundation.
  46. Snider JL, Oosterhuis DM, Skulman BW, & Kawakami EM. (2009). Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 137(2), 125–138.
  47. Snider JL, Thangthong N, Pilon C, Virk G, & Tishchenko V. (2018). OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L.) seedling vigor under contrasting growth temperature regimes. Plant Physiology and Biochemistry, 132, 249–257. https://doi.org/10.1016/j.plaphy.2018.09.015.
  48. Sorour FA, & Rassoul SFA. (1974). Effect of shading at different stages of growth of the cotton plant on flowering and fruiting, boll shedding, yield of seed cotton and earliness. Libyan Journal of Agriculture, 3, 39–43.
  49. Stöckle CO, & Kemanian AR. (2009). Crop Radiation Capture and Use Efficiency : A Framework for Crop Growth Analysis. In Crop Physiology: Applications for Genetic Improvement and Agronomy (pp. 145–170). Elsevier.
  50. Tao F, Zhang L, Zhang Z, & Chen Y. (2022). Designing wheat cultivar adaptation to future climate change across China by coupling biophysical modelling and machine learning. European Journal of Agronomy, 136, 126500. https://doi.org/10.1016/J.EJA.2022.126500
  51. Trapani N, Hall AJ, Sadras VO, & Vilella F. (1992). Ontogenetic changes in radiation use efficiency of sunflower (Helianthus annuus L.) crops. Field Crops Research, 29, 301–316.
  52. Van der Westhuizen M, Oosterhuis D, Berner J, & Boogaers N. (2020). Chlorophyll a fluorescence as an indicator of heat stress in cotton (Gossypium hirsutum L.). South African Journal of Plant and Soil, 37, 116–119. https://doi.org/10.1080/02571862.2019.1665721.
  53. Virk G, Snider JL, Chee P, Jespersen D, Pilon C, Rains G, Roberts P, Kaur N, Ermanis A, & Tishchenko V. (2021). Extreme temperatures affect seedling growth and photosynthetic performance of advanced cotton genotypes. Industrial Crops and Products, 172, 114025. https://doi.org/10.1016/J.INDCROP.2021.114025.
  54. Wahid A, Gelani S, Ashraf M, & Foolad MR. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223.
  55. Welsh JM, Taschetto AS, & Quinn JP. (2022). Climate and agricultural risk: Assessing the impacts of major climate drivers on Australian cotton production. European Journal of Agronomy, 140, 126604. https://doi.org/10.1016/j.eja.2022.126604
  56. Yeates SJ, Constable GA, & McCumstie T. (2010a). Irrigated cotton in the tropical dry season. I: Yield, its components and crop development. Field Crops Research, 116(3), 278–289. https://doi.org/10.1016/j.fcr.2010.01.005
  57. Yeates SJ, Constable GA, & McCumstie T. (2010b). Irrigated cotton in the tropical dry season. II: Biomass accumulation, partitioning and RUE. Field Crops Research, 116(3), 290–299. https://doi.org/10.1016/j.fcr.2010.01.007
  58. Yousaf MI, Hussain Q, Alwahibi M., Aslam MZ, Khalid MZ, Hussain S, Zafar A, Shah SAS, Abbasi AM, Mehboob A, Riaz MW, & Elshikh MS. (2023). Impact of heat stress on agro-morphological, physio-chemical and fiber related paramters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University - Science, 35(1), 102379. https://doi.org/10.1016/J.JKSUS.2022.102379