Downloads
Download
Additional Files
Download - Supplementary Materials


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Cold Air Pools (CAPs) as Natural Freezers for the Study of Plant Responses to Low Temperatures
Enara Alday 1,*, Usue Pérez-López 1, Beatriz Fernández-Marín 1,2, Jaime Puértolas 2, Águeda M. González-Rodríguez 2, José Luis Martin Esquivel 3 and José Ignacio García-Plazaola 1
1 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
2 Department of Botany, Ecology and Plant Physiology, Facultad de Farmacia, University of La Laguna, La Laguna 38200, Spain
3 Teide National Park, La Orotava, Tenerife, Islas Canarias 38300, Spain
* Correspondence: enara.alday@ehu.eus
Received: 18 October 2024; Revised: 26 March 2025; Accepted: 10 April 2025; Published: 16 April 2025
Abstract: The stratification of cold air is a phenomenon that typically occurs under certain topographic (closed ground depressions) and atmospheric conditions (stability and nocturnal radiative cooling). Under such conditions the drainage of the heavier cold air from the higher elevations causes its accumulation for days or weeks in the bottom of these depressions, leading temperatures to dramatically decrease and to decouple from regional climatic conditions. These particular locations which are frequent in karstic, volcanic and glacial landscapes, have been proposed to act as microrefugia of biodiversity in the context of climate warming. The existence of these cold air pools (CAPs) has been reported worldwide, and their biotic communities differ from equivalent sites out of these locations. However, there is an almost complete absence of ecophysiological studies concerning plant communities inhabiting CAPs. Thus, one of the objectives of this review is to hypothesize the effects of these specific conditions on the biology of the soil and the manner in which these plants should respond to such particular environmental conditions. Furthermore, given that temperature can decrease dramatically over short distances inside CAPs, in the present review we also propose their use as natural freezers for the study of plant responses to low temperatures.
Keywords:
Cold Air Pool (CAP) microrefugia low temperature plant ecophysiology freezing-toleranceReferences
- Bátori Z, Valkó O, Vojtkó A, Tölgyesi C, Farkas T, Frei K, Hábenczyus AA, Tóth Á, Li G, & Rádai Z. (2023). Environmental Heterogeneity Increases the Conservation Value of Small Natural Features in Karst Landscapes. Science of the Total Environment, 872, 162120. https://doi.org/10.1016/j.scitotenv.2023.162120
- Bátori Z, Vojtkó A, Farkas T, Szabó A, Havadtoi K, Vojtkó AE, Tölgyesi C, Cseh V, Erdos L, & Maák IE. (2017). Large- and Small-Scale Environmental Factors Drive Distributions of Cool-Adapted Plants in Karstic Microrefugia. Annals of Botany, 119(2), 301–309. https://doi.org/10.1093/aob/mcw233
- Ben-Haj-Salah H, & Tardieu F. (1995). Temperature Affects Expansion Rate of Maize Leaves without Change in Spatial Distribution of Cell Length (Analysis of the Coordination between Cell Division and Cell Expansion). Plant Physiology, 109(3), 861–870. https://doi.org/10.1104/pp.109.3.861
- Blennow K, & Lindkvist L. (2000). Models of Low Temperature and High Irradiance and Their Application to Explaining the Risk of Seedling Mortality. Forest Ecology and Management, 135(1–3), 289–301. https://doi.org/10.1016/S0378-1127(00)00287-5
- Blum, A. (2015). Stress, Strain, Signaling, and Adaptation-Not Just a Matter of Definition. Journal of Experimental Botany, 67(3), 562–565. https://doi.org/10.1093/jxb/erv497
- Bredow M, & Walker VK. Ice-Binding Proteins in Plants. Frontiers in Plant Science 2017, 8, 325466. https://doi.org/10.3389/fpls.2017.02153
- Brooks PD, Williams MW, & Schmidt SK. (1998). Inorganic Nitrogen and Microbial Biomass Dynamics before and during Spring Snowmelt. Biogeochemistry, 43, 1–15. https://doi.org/10.1023/A:1005947511910
- Buchner O, Neuner G, & Ball M. (2011). Winter Frost Resistance of Pinus Cembra Measured in situ at the Alpine Timberline as Affected by Temperature Conditions. Tree Physiology, 31(11), 1217–1227. https://doi.org/10.1093/treephys/tpr103
- Buchner O, Stoll M, Karadar M, Kranner I, & Neuner G. (2015). Application of Heat Stress in situ Demonstrates a Protective Role of Irradiation on Photosynthetic Performance in Alpine Plants. Plant, Cell & Environment, 38(4), 812–826. https://doi.org/10.1111/pce.12455
- Cabrera HM, Rada F, & Cavieres L. (1998). Effects of Temperature on Photosynthesis of Two Morphologically Contrasting Plant Species along an Altitudinal Gradient in the Tropical High Andes. Oecologia, 114, 145–152. https://doi.org/10.1007/s004420050430
- Chung U, Seo HH, Hwang KH, Hwang BS, Choi J, Lee JT, & Yun JI. (2006). Minimum Temperature Mapping over Complex Terrain by Estimating Cold Air Accumulation Potential. Agricultural and Forest Meteorology, 137(1–2), 15–24. https://doi.org/10.1016/j.agrformet.2005.12.011
- Cordeiro AMR, Orenlas A, & Silva DD. (2023). The importance of topography in the formation of cold‑air pooling in urban spaces. The example of the city of Coimbra (Portugal). Theoretical and Applied Climatology 152, 227–239. https://doi.org/10.1007/s00704-023-04401-8
- Cruz-Paredes C, Tájmel D, & Rousk J. (2021). Can Moisture Affect Temperature Dependences of Microbial Growth and Respiration? Soil Biology and Biochemistry, 156, 108223. https://doi.org/10.1016/j.soilbio.2021.108223
- Curtis JA, Flint LE, Flint AL, Lundquist JD, Hudgens B, Boydston EE, & Young JK. (2014). Incorporating Cold-Air Pooling into Downscaled Climate Models Increases Potential Refugia for Snow-Dependent Species within the Sierra Nevada Ecoregion, CA. PLoS ONE, 9, e106984. https://doi.org/10.1371/journal.pone.0106984
- Daly C, Smith JW, Smith JI, & McKane RB. (2007). High-Resolution Spatial Modeling of Daily Weather Elements for a Catchment in the Oregon Cascade Mountains, United States. Journal of Applied Meteorology and Climatology, 46(10), 1565–1586. https://doi.org/10.1175/JAM2548.1
- Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, & Yurin V. (2014). Stress-Induced Electrolyte Leakage: The Role of K+-Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. Journal of Experimental Botany, 65(5), 1259–1270. https://doi.org/10.1093/jxb/eru004
- Duker R, Cowling RM, van der Vyver ML, & Potts AJ. (2020). Site Selection for Subtropical Thicket Restoration: Mapping Cold-Air Pooling in the South African Sub-Escarpment Lowlands. PeerJ, 8, e8980. https://doi.org/10.7717/peerj.8980
- Edwards AC, Scalenghe R, & Freppaz M. (2007). Changes in the Seasonal Snow Cover of Alpine Regions and Its Effect on Soil Processes: A Review. Quaternary International, 162–163, 172–181. https://doi.org/10.1016/j.quaint.2006.10.027
- Ensminger I, Busch F, & Huner NPA. (2005). Photostasis and Cold Acclimation: Sensing Low Temperature through Photosynthesis. Physiologia Plantarum, 126(1), 28–44. https://doi.org/10.1111/j.1399-3054.2006.00627.x
- Esteban R, Fernández-Marín B, Becerril JM, & García-Plazaola JI. (2008). Photoprotective Implications of Leaf Variegation in E. dens-canis L. and P. officinalis L. Journal of Plant Physiology, 165(12), 1255–1263. https://doi.org/10.1016/j.jplph.2007.07.024
- Frei K, Vojtkó A, Farkas T, Erdős L, Barta K, E-Vojtkó A, Tölgyesi C, & Bátori Z. (2023). Topographic Depressions Can Provide Climate and Resource Microrefugia for Biodiversity. iScience, 26(11), 108202. https://doi.org/10.1016/j.isci.2023.108202
- García-Plazaola JI, Hernández A, Olano JM, & Becerril JM. (2003). The Operation of the Lutein Epoxide Cycle Correlates with Energy Dissipation. Functional Plant Biology, 30(3), 319–324. https://doi.org/10.1071/FP02224
- Giovagnoli L, & Tasinazzo S. (2014). The Dolina System Vegetation of the Northern Glacio-Karst Sector of the Asiago Plateau (Venetian Prealps-NE Italy). Plant Sociology, 51, 83–116. https://doi.org/10.7338/pls2014512/06
- Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, & McDowell NG. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550–1566. https://doi.org/10.1111/nph.16485
- Hall SJ, Maurer G, Hoch SW, Taylor R, & Bowling DR. (2014). Wasatch Impacts of anthropogenic emissions and cold air pools on urban to montane gradients of snowpack ion concentrations in the Wasatch Mountains, Utah. Atmospheric Environment 98, 231–241. https://doi.org/10.1016/j.atmosenv.2014.08.076
- Halloy S, & González JA. (1993). An Inverse Relation between Frost Survival and Atmospheric Pressure. Arctic, Antarctic, and Alpine Research, 25(2), 117–123. https://doi.org/10.1080/00040851.1993.12002991
- Hartman K, & Tringe SG. (2019). Interactions between Plants and Soil Shaping the Root Microbiome under Abiotic Stress. Biochemical Journal, 476(19), 2705–2724. https://doi.org/10.1042/BCJ20180615
- Hudson MA, & Idle DB. (1962). The Formation of Plant Tissues. Planta, 57, 718–730. https://doi.org/10.1007/BF01930351
- Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, & Wang L. (2018). Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393
- Iglesisas Noromet. (2021, July 1). Asociación Meorológica Del Noroeste Peninsular. Available online: https://noromet.org/.
- Iijima Y, & Shinoda M. (2002). The Influence of Seasonally Varying Atmospheric Characteristics on the Intensity of Nocturnal Cooling in a High Mountain Hollow. Journal of Applied Meteorology, 41(7), 734–743. https://doi.org/10.1175/1520-0450(2002)041<0734:TIOSVA>2.0.CO;2
- John A, Olden JD, Oldfather MF, Kling MM, & Ackerly DD. (2024). Topography Influences Diurnal and Seasonal Microclimate Fluctuations in Hilly Terrain Environments of Coastal California. PLoS ONE, 19(3), e0300378. https://doi.org/10.1371/journal.pone.0300378
- Körner C. (2021). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer International Publishing.
- Körner C, & Miglietta F. (1994). Long Term Effects of Naturally Elevated CO2 on Mediterranean Grassland and Forest Trees. Oecologia, 99, 343–351. https://doi.org/10.1007/BF00627748
- Kusunoki K, & Ueno K. (2022). Development of a Nocturnal Temperature Inversion in a Small Basin Associated with Leaf Area Ratio Changes on the Mountain Slopes in Central Japan. Journal of the Meteorological Society of Japan, 100(6), 913–926. https://doi.org/10.2151/jmsj.2022-047
- Larcher W. (2003). Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups (4th ed.). Oxford University Press.
- Lazar VR. (1996). Geländeklimastiche Untersuchungen Auf Teneriffa (Insbesondere in Den Cañadas). Wetter und Leben, 48, 217–240.
- Lembrechts JJ, Aalto J, Ashcroft MB, De Frenne P, Kopecký M, Lenoir J, Luoto M, Maclean IMD, Roupsard O, Fuentes-Lillo E, García RA, Pellissier A, Pitteloud G, Alatalo JM,…& Nijs I. (2020). SoilTemp: A Global Database of near-Surface Temperature. Global Change Biology, 26(11), 6616–6629. https://doi.org/10.1111/gcb.15123
- Lipson DA, Raab TK, Schmidt SK, & Monson RK. (1999). Variation in Competitive Abilities of Plants and Microbes for Specific Amino Acids. Biology and Fertility of Soils, 29, 257–261. https://doi.org/10.1007/s003740050550
- López Díez A, Antequera PJD, Pacheco JD, Esquivel JLM, & Gómez MVM. (2022). Rasgos Climáticos Del Parque Nacional Del Teide. Singularidad y Diversidad. In MD Villalonga & JLM Esquivel (Eds.), Ciencia en el Parque Nacional del Teide (pp. 119–138). Publicaciones Turquesa S.L.
- Lundquist JD, Pepin N, & Rochford C. (2008). Automated Algorithm for Mapping Regions of Cold-Air Pooling in Complex Terrain. Journal of Geophysical Research: Atmospheres, 113(D22). https://doi.org/10.1029/2008JD009879
- Manzoni S, Ding Y, Warren C, Banfield C.C, Dippold MA, & Mason-Jones K. (2021). Intracellular Storage Reduces Stoichiometric Imbalances in Soil Microbial Biomass–A Theoretical Exploration. Frontiers in Ecology and Evolution, 9, 714134. https://doi.org/10.3389/fevo.2021.714134
- Martz F, Vuosku J, Ovaskainen A, Stark S, & Rautio P. (2016). The Snow Must Go on: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest. PLoS ONE, 11, e0156620. https://doi.org/10.1371/journal.pone.0156620
- Mason-Jones K, Robinson SL, Veen GF, Manzoni S, & van der Putten WH. (2022). Microbial Storage and Its Implications for Soil Ecology. The ISME Journal, 16, 617–629. https://doi.org/10.1038/s41396-021-01110-w
- Matusick G, Ruthrof KX, Brouwers NC, & Hardy GSJ. (2014). Topography Influences the Distribution of Autumn Frost Damage on Trees in a Mediterranean-Type Eucalyptus Forest. Trees, 28, 1449–1462. https://doi.org/10.1007/s00468-014-1048-4
- McCaffrey K, Wilczak JM, Bianco L, Grimit E, Sharp J, Banta R, Friedrich K, Fernando HJS, Krishnamurthy R, Leo LS, & Muradyan P. (2019). Identification and Characterization of Persistent Cold Pool Events from Temperature and Wind Profilers in the Columbia River Basin. Journal of Applied Meteorology and Climatology, 58(12), 2533–2551. https://doi.org/10.1175/JAMC-D-19-0046.1
- Miglietta F. (2006). Natural CO2 Springs in Italy: A Resource for Examining Long-Term Response of Vegetation to Rising Atmospheric CO2 Concentrations. Plant Cell Environment, 16(7), 873–878. https://doi.org/10.1111/j.1365-3040.1993.tb00510.x
- Ninyerola M, Pons X, & Roure JM. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20(14), 1823–1841. https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B
- Novick KA, Oishi AC, & Miniat CF. (2016). Cold Air Drainage Flows Subsidize Montane Valley Ecosystem Productivity. Global Change Biology, 22(12), 4014–4027. https://doi.org/10.1111/gcb.13320
- Pastore MA, Classen AT, D’Amato AW, English ME, Rand K, Foster JR, & Adair EC. (2024). Frequent and Strong Cold-Air Pooling Drives Temperate Forest Composition. Ecology and Evolution, 14(4), e11126. https://doi.org/10.1002/ece3.11126
- Pastore MA, Classen AT, D’Amato AW, Foster JR & Adair EC. (2022). Cold-Air Pools as Microrefugia for Ecosystem Functions in the Face of Climate Change. Ecology, 103(8), e3717. https://doi.org/10.1002/ecy.3717
- Patsiou TS, Conti E, Theodoridis S, & Randin CF. (2017). The Contribution of Cold Air Pooling to the Distribution of a Rare and Endemic Plant of the Alps. Plant Ecology & Diversity, 10(1), 29–42. https://doi.org/10.1080/17550874.2017.1302997
- Pietikäinen J, Pettersson M, & Bååth E. (2005). Comparison of Temperature Effects on Soil Respiration and Bacterial and Fungal Growth Rates. FEMS Microbiology Ecology, 52(1), 49–58. https://doi.org/10.1016/j.femsec.2004.10.002
- Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, & Morales LO. (2019). A Perspective on Ecologically Relevant Plant-UV Research and Its Practical Application. In Proceedings of the Photochemical and Photobiological Sciences. Photochemical & Photobiological Sciences, 18, 970–988.
- Sakai, A, & Larcher, W. (1987). Frost Survival of Plants. Responses and Adaptation to Freezing Stress. Springer-Verlag.
- Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, & Appenzeller C. (2004). The Role of Increasing Temperature Variability in European Summer Heatwaves. Nature, 427, 332–336. https://doi.org/10.1038/nature02300
- Schnecker J, Spiegel F, Li Y, Richter A, Sandén T, Spiegel H, Zechmeister-Boltenstern S, & Fuchslueger L. (2023). Microbial Responses to Soil Cooling Might Explain Increases in Microbial Biomass in Winter. Biogeochemistry, 164, 521–535. https://doi.org/10.1007/s10533-023-01050-x
- Schubert M, Humphreys AM, Lindberg CL, Preston JC, & Fjellheim S. (2020). To Coldly Go Where No Grass Has Gone before: A Multidisciplinary Review of Cold Adaptation in Poaceae. Annual Plant Reviews Online, 3(4), 523–562. https://doi.org/10.1002/9781119312994.apr0739
- Soler MR, Infante C, Buenestado P, & Mahrt, L. (2002). Observation of Nocturnal Drainage Flow in a Shallow Gully. Boundary-Layer Meteorology, 105, 253–273. https://doi.org/10.1023/A:1019910622806
- Sun X, Ivey CE, Baker KR, Nenes A, Lareau NP, & Holmes HA. (2021). Salt Lake Confronting Uncertainties of Simulated Air Pollution Concentrations during Persistent Cold Air Pool Events in the Salt Lake Valley, Utah Environmental Science Technology 55(22), 15072–15081. https://doi.org/10.1021/acs.est.1c05467
- Thomashow MF. (1999). Plant cold acclimation: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Biology, 50, 571–599. https://doi.org/10.1146/annurev.arplant.50.1.571
- Verhoeven A, García-Plazaola JI, & Fernández-Marín B. (2018). Shared Mechanisms of Photoprotection in Photosynthetic Organisms Tolerant to Desiccation or to Low Temperature. Environmental and Experimental Botany, 154, 66–79. https://doi.org/10.1016/j.envexpbot.2017.09.012
- Vosper SB, Hughes JK, Lock AP, Sheridan PF, Ross AN, Jemmett-Smith B, & Brown AR. (2014). Cold-Pool Formation in a Narrow Valley. Quarterly Journal of the Royal Meteorological Society, 140(679), 699–714. https://doi.org/10.1002/qj.2160
- Vuosku J, Martz F, Hallikainen V, & Rautio P. (2022). Changing Winter Climate and Snow Conditions Induce Various Transcriptional Stress Responses in Scots Pine Seedlings. Frontiers in Plant Science, 13, 1050903. https://doi.org/10.3389/fpls.2022.1050903
- Ward SE, Schulze M, & Roy B. (2018). A Long-Term Perspective on Microclimate and Spring Plant Phenology in the Western Cascades. Ecosphere, 9(10), e02451. https://doi.org/10.1002/ecs2.2451
- Whittaker RH. (1975). Communities and Ecosystems (2nd ed.). MacMillan Publishing Co.
- Wipf S, Sommerkorn M, Stutter MI, Wubs ERJ, & Van Der Wal R. (2015). Snow Cover, Freeze-Thaw, and the Retention of Nutrients in an Oceanic Mountain Ecosystem. Ecosphere, 6(10), 1–16. https://doi.org/10.1890/ES15-00099.1