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Abstract: Stomatal density is one of the plant traits influencing leaf gas exchange and is known to be 

affected by the plant’s environment. Understanding its degree of plasticity to various abiotic factors is 

therefore important. We conducted a meta-analysis of a wide range of experiments in which plants were 

grown under different levels of CO2, light, temperature, and water availability, and derived generalized 

dose-response curves. Although both stomatal density and stomatal index showed a significant negative 

correlation with CO2 levels, these relationships were weak and only marginally consistent across the 

analyzed experiments. In contrast, the effect of growth light intensity was positive, highly consistent, and 

substantially stronger than the impact of atmospheric CO2. Temperature also positively influenced 

stomatal density, while water availability showed no consistent effects. Based on these dose-response 

curves, we highlight several caveats when using stomatal density or stomatal index for paleo-CO2 

reconstruction. The weak CO2 response, coupled with the strong confounding impact of light intensity, 

poses significant limitations to the accuracy of such estimates.  

 Keywords: CO2; daily light integral; light intensity; meta-analysis; paleoclimatology; stomatal 

density; stomatal index 

1. Introduction 

There are probably more stomata on Earth than grains 

of sand on all the world’s beaches. A single leaf can contain 

hundreds of thousands of stomata (Ciha & Brun, 1975), 

making the total number of stomatal pores on a single tree - 

or across an entire forest - staggeringly immense. Stomata act 

as critical gateways for carbon dioxide uptake while limiting 

water loss, thus playing a central role in Earth’s carbon and 

water cycles (Berry, Beerling, & Franks, 2010). At the leaf 

level, gas and water fluxes are co-regulated by various 

stomatal characteristics. One extensively studied trait is 

stomatal conductance, which can respond relatively quickly 

(within minutes to hours) to changes in light intensity, CO2 

concentration, or the leaf’s water status (Lawson & Vialet-

Chabrand, 2019). Over longer time frames (days to months), 

plants can further adjust their gas and water fluxes by 

producing new leaves with different stomatal sizes, or by 

altering the number of stomata per unit leaf area. This latter 

trait, known as ‘stomatal density’, forms the central focus of 

this paper. 

Stomatal density (SD) is known to vary systematically 

within a plant. Typically, SD is higher on the abaxial (lower) 

side of a leaf than on the adaxial (upper) side, and it increases 

from the base to the tip of the leaf, as well as from the midrib 

toward the leaf margin (Salisbury, 1927). SD may also increase 

with a leaf’s position on the plant, and can vary with genotype 

or species (Wall et al., 2023). These factors must be considered 

when examining how SD responds to environmental 

conditions (Körner, 1988; Woodward, 1993; Roth-Nebelsick, 

2005). Our study investigates how SD is influenced by four 

important abiotic factors: ambient [CO2], light intensity, 

temperature and water availability. To this end, we conducted 

a meta-analysis focusing on the longer-term effects of these 

factors on SD. A few years ago, Yan, Zhong, and Shangguan 

(2017) conducted a similar analysis and found that the response 

ratio of SD between high and low CO2 levels was not 

significantly different from 1.0, suggesting no overall effect of 

https://creativecommons.org/licenses/by/4.0/


Poorter et al.   Plant Ecophysiol. 2025, 1(1), 1  

https://doi.org/10.53941/plantecophys.2025.100001  2 of 19  

ambient [CO2]. They also found that both higher temperature 

and lower water availability increased SD. However, their 

analysis did not consider the effects of light intensity, a gap that 

we aim to address in this study.  

A standard meta-analysis typically categorizes the levels of 

an environmental factor or treatment in each experiment as 

‘high’ and ‘low’, and then calculates the relative response by 

comparing the ratio of the phenotypic variable of interest 

between these two categories (Gurevitch et al., 2018). However, 

the observed response can also depend on the specific levels of 

the environmental factor applied, and may saturate within certain 

ranges. To gain more comprehensive and generalizable insights, 

it is beneficial to derive dose-response curves, which describe the 

response of a phenotypic variable across a broad range of levels 

for the environmental factor of interest (Poorter et al., 2022a). In 

this study, we adopt this approach to derive dose-response curves 

for the four environmental factors under consideration. Since 

plants typically respond more to the cumulative light flux 

received over time rather than the instantaneous light intensity 

present at a given moment in time (Kelly et al., 2020), we 

represent light availability in our analysis using the Daily Light 

Integral (DLI). DLI quantifies the total number of quanta in the 

photosynthetically active range (400–700 nm) received per unit 

ground area per day. This metric generally provides a more 

biologically relevant measure of light availability for plants 

(Poorter et al., 2019). 

The application of dose-response curves for SD has 

proven significant in paleoclimatology. As atmospheric CO2 

concentrations continue to rise, understanding Earth’s climate 

sensitivity to CO2 is of critical importance. Examining past 

variations in atmospheric CO2 and the corresponding climate 

changes can provide valuable insights (Hönisch et al., 2023). 

CO2 levels from the past 800,000 years can be measured 

directly from air trapped in Antarctic ice (Higgins et al., 2015). 

However, for periods prior to 800,000 years ago, direct 

measurements are not possible, making it necessary to rely on 

proxy estimates (Royer, 2001). One such method of 

reconstruction involves comparing the SD of well-preserved 

fossilized leaves to that of the same or closely related species 

growing today (e.g., McElwain & Chaloner, 1996; Kürschner, 

1997; Rundgren & Beerling, 1999; Kürschner, Kvaček, & 

Dilcher, 2008). This approach was pioneered by Woodward 

(1987), who showed that SDs sampled in the 1980s were 

generally lower than those of herbarium specimens collected 

200 years earlier. A functional explanation for the observed 

negative relationship between SD and atmospheric [CO2] is 

that higher CO2 levels allow plants to maintain sufficient CO2 

uptake, while decreasing water loss through transpiration by 

decreasing the number of stomata per unit area (Royer, 2001). 

Assuming that the sensitivity of these plants to CO2 has 

remained constant over time, SD in fossilized leaves offers a 

proxy for estimating atmospheric CO2 levels in past eras.  

Not all findings have been unequivocal, though. 

Herbarium material of various species collected over an 80–

110 year span did not reveal any consistent trends over time 

(e.g., Hu et al., 2015; Ydenberg et al., 2021). Over a span of 

70–90 years, Körner (1988) observed increases in SD rather 

than decreases, be it that there was considerable variation 

among species and the overall response was not statistically 

significant. Experimentally, the negative relationship between 

SD and [CO2] has also been inconsistent, with various studies 

failing to replicate it (e.g., Apel, 1989; Reid et al., 2003). A 

complication that soon became apparent, is that SD not only 

depends on the number of stomatal cells initiated, but also on 

the degree of expansion of the surrounding epidermal cells. 

This issue has prompted researchers to adopt the stomatal index 

(SI) as an alternative proxy. SI represents the percentage of 

stomata relative to the total number of stomata and epidermal 

cells (Salisbury, 1927). In the paleobotanic literature it is 

generally assumed that SI is more strongly influenced by 

ambient [CO2] than by other environmental factors, such as 

water availability or light intensity (Royer, 2001), making it a 

potentially more reliable indicator for ancient CO2 levels than 

SD. As a result, SI has become the more dominant metric in this 

field (see compilation by Hönisch et al., 2023), although its 

underlying premise is still not well constrained. To address this, 

we also have derived dose-response curves for SI in relation to 

environmental variation, as far as data were available.  

In this paper, we examine the effects of CO2 concentration, 

daily light integral, temperature, and water availability on both 

stomatal density (SD) and stomatal index (SI). Using a meta-

analysis of studies in which plants were experimentally exposed 

to varying levels of these environmental factors, we derive 

generalized dose-response curves wherever possible. We 

evaluate the consistency of the data, determine the form of the 

dose-response curve that best represents the generalized 

relationships, and quantify the overall plasticity. Finally, we 

assess the generalizability of the CO2 dose-response curve and 

compare our results with functions currently used to estimate 

past CO2 concentrations based on fossil SD and SI. 

2. Materials & Methods 

We analyzed compiled data from experimental 

treatments where plants were grown for a minimum of two 

weeks and at least one-third of their actual lifespan, under 

varying levels of CO2, light intensity, temperature, or water 

availability, and where stomatal density (SD) and/or stomatal 

index (SI) was reported for leaves that had developed under 

these conditions. These experiments were conducted in growth 

chambers, glasshouses, open-top chambers or free-air CO2 

enrichment (FACE) facilities, provided that the plants were 

grown individually or in mono-specific stands. Unlike the 

meta-analysis by Yan et al. (2017), we excluded data from 

herbarium specimens and from field-grown plants in CO2 

springs or along natural gradients of light, temperature, water 

availability or altitude, as other environmental factors may 

have co-varied with the factor of interest.  

Stomatal density exhibits significant variation across 

plant species. Many tree species lack stomata on the adaxial 

(upper) surface of their leaves, while numerous herbaceous 

species exhibit higher stomatal densities on the abaxial 
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(lower) side compared to the adaxial side (Salisbury, 1927; 

Körner, 1988). However, in some cases, stomata are more 

abundant or exclusively present on the adaxial surface (Kaul, 

1976). When SD data were reported for both leaf surfaces, we 

summed the values from the abaxial and adaxial sides, as this 

provides the most comprehensive measure relevant to gas 

exchange. For SI, we averaged the values from both surfaces. 

If data for only one side was reported (typically the abaxial 

side), we used that value as SD or SI estimate, assuming that 

researchers considered that to be the most relevant surface for 

their species of interest. To standardize the data, phenotypic 

values in a given experiment and species were subsequently 

scaled to the values observed at a reference [CO2] of 450 ppm, 

a Daily Light Integral (DLI) of 8 mol m−2 d−1, an average 

temperature level over the full diurnal cycle of 20 °C. For 

water availability, drought severity was estimated by scaling 

the biomass or leaf area of drought-stressed plants relative to 

control plants grown under optimal water conditions. We 

therefore excluded papers where no quantification of plant 

size was made. For [CO2] and DLI we expanded the datasets 

reported by Poorter et al. (2019, 2022a, 2022b), incorporating 

approximately 50% more data to the compilation. 

After scaling the phenotypic responses for each species 

and each individual experiment separately, we fitted four 

types of curves describing different potential relationships in 

the data: (a) no relationship, (b) linear regression, (c) a 

saturating curve and (d) a quadratic polynomial. To determine 

the best-fitting curve, we applied the Akaike Information 

Criteria (AIC). Although an assessment across different 

environmental factors to some extent is a comparison between 

different entities, we used the data and the resulting curve fits 

to summarize all observations through three key indices.  

(a) A Plasticity Index (PI): This index represents the 

ratio of SD or SI derived from the fitted relationships at CO2 

concentrations of 1200 and 200 ppm, a DLI of 50 and 1 mol 

m−2 day−1, or temperatures of 35 and 5 °C, respectively. For 

drought stress, we considered SD and SI values under optimal 

watering conditions relative to those at 10% of the optimal 

plant biomass. In cases of negative responses, we calculated 

the inverse of the ratio and denoted this with a minus sign, to 

maintain comparable scales. 

(b) A Consistency Index (CI): This index reflects the 

percentage of experiments in which plants treated with the 

highest levels of CO2, light, temperature or water exhibited 

higher SD or SI compared to those treated with the lowest 

levels. A value of 100% indicates fully consistent increases 

across experiments, while 0% indicates fully consistent 

decreases. A value of 50% suggests either random variability, 

or strong contrasting responses between species. 

(c) A Reliability Index (RI): This index assesses the 

robustness of the selected form of the dose-response curve, the 

PI and the CI, on a scale from 0 to 9. It accounts for the number 

of experiments, the number of species studied, the variability 

between observations, and the range of the environmental 

factors over which experimental data are available. A higher 

value indicates a lower likelihood of changes in results with the 

addition of new data. While this index is particularly useful for 

comparing different plant traits in response to the same 

environmental variable, it can also be used - albeit with caution 

- to compare the reliability of PI and CI across different 

environmental factors. 

For a more detailed description of the analysis, readers 

are referred to Poorter et al. (2022a) and Supporting Info S1. 

3. Results & Discussion 

3.1. Stomatal density 

In total, we compiled data from 245 papers, with references 

listed in Supporting Info S2. The analysis of these data reveals a 

significant and overall negative response of stomatal density 

(SD) to ambient CO2 levels: as CO2 concentration increases, SD 

decreases (Figure 1A). Median values calculated for each 

subsequent 10% of the data suggest a steeper slope in the low-

CO2 range compared to the high-CO2 range, consistent with the 

‘ceiling’ discussed by Roth-Nebelsick (2005), where SD 

becomes less responsive to further increases in [CO2]. However, 

the data show considerable variability, and the Akaike 

Information Criterion identified a linear relationship as the 

simplest model to describe the trend. The slope of this regression 

line is very modest, with a Plasticity Index (PI) of -1.07 (Table 

1), indicating a marginal decrease of 7% in SD across the CO2 

range of 200–1200 ppm. Moreover, the consistency of the 

response across the compiled experiments is relatively low: 

when comparing the treatments with the highest and lowest CO2 

levels within each experiment and for each species, 40% of the 

studies report increases in SD, while 60% report decreases 

(Table 1). This distribution is close to what would be expected 

by chance, where increases and decreases would occur in 

approximately 50% of the experiments. 

What might cause such large variability? Firstly, 

methodology may play a role, as SD can vary substantially 

within a single leaf, between different leaves, and even between 

the adaxial and abaxial sides (Salisbury, 1927; Körner, 1988; 

Poole et al., 1996; Yan et al., 2017). Therefore, care must be 

taken to sample the same part of the same leaf in the analysis 

(Woodward, 1993), or, ideally, to systematically sample various 

parts of the leaf to account for spatial variability. Secondly, 

intrinsic differences among species, functional groups or 

phylogenetic clades may contribute to the observed variability. 

The results suggest that herbaceous C4 species, in general, show 

no response to [CO2], whereas both herbaceous and woody C3 

species exhibit a slightly negative response (Table 2). However, 

none of these species contrasts is statistically significant. Thirdly, 

strong interactions between [CO2] and other environmental 

conditions could lead to variations among experiments. 

Currently, however, there are too few data in our dataset to derive 

dose-response surfaces, which would enable quantification of 

the strength of these interactions and offer a more detailed 

understanding. Finally, maternal effects may also influence SD 

(Vráblová et al., 2018). However, nearly all experiments in our 

compilation used seeds from plants grown at control CO2 

levels, likely limiting this source of variation.
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Figure 1. Dose-response curves for (A) Stomatal Density (SD) and (B) Stomatal Index (SI) as functions of ambient CO2 concentration. 

Data points represent scaled mean values per species and experiment, relative to a reference [CO2] of 450 ppm. Data for herbaceous 

plants are in blue, for woody species in red. Green squares indicate the median scaled trait value and [CO2] per decile of observations, or 

per group of 10 observations when fewer than 100 observations are available. The shaded area represents the interquartile range (25th 

and 75th percentiles). The thick orange line shows the fitted relationship across all data points. Calculated Plasticity Indices (PI) are 

provided, along with a visual indication of the Consistency index (CI) and Reliability Index (RI). The strength of the Consistency Index 

is indicated by the number of orange symbols: none: % increases in the trait value with an increase in the abiotic environmental factor: 

40–60%; : 30–40% or 60–70%; : 20–30% or 70–80%; : 10–20% or 80–90%; : 0–10% or 90–100%. The strength 

of the Reliability Index: no symbol: 0–1; : 2–3; : 4–5; : 6–7; : 8–9. For more detail see Tables 1 and 2 and 

Supporting Info S3 (Figures S1–S8). 

Table 1. Summary of the dose-response curve analysis for Stomatal Density (SD) and Stomatal Index (SI) in relation to four 

environmental factors: (1) ambient CO2 concentration (2) Daily Light Integral (DLI), (3) average daily temperature and (4) water 

availability during growth. 

Env. Factor Trait 

Range in 

Env. 

Factor 

# of 

Observations 

# of 

Species 
Fit 

Pseudo  

r2 

Plasticity 

(PI) 

Consistency 

(CI) 

Reliability 

(RI) 
p a b c 

[CO2] 

(ppm) 

SD 150–3200 660 180 L*** 0.02 −1.07 40 8 
ns 

1.031 −6.53 × 10−5  

SI 165–2000 220 80 L*** 0.14 −1.12 32 7 1.053 −1.12 × 10−4  

DLI 

(mol m−2 day−1) 

SD 0.4–72 360 100 S*** 0.51 1.93 94 7 
ns 

1.477 0.526 6.69 × 10−2 

SI 0.9–64 130 30 S*** 0.31 1.96 92 4 1.285 0.553 0.1147 

Temp. 
(°C) 

SD 5–38 150 35 L*** 0.31 1.54 68 4 
 

0.710 1.40 × 10−2  

SI 13–30 10 5 nd nd nd 57 1    

Water 

(Rel. units) 

SD 0.15–1 110 35 - 0.00 1.14 47 3 
 

0.8709 0.1291  

SI 0.25–1 30 10 nd nd nd 62 2    

Columns 1 and 2 indicate the environmental factor under consideration and the traits analyzed. For temperature, the average temperature over the full 

day/night cycle during active growth was used. Water stress was assessed as the relative biomass of water-stressed plants compared to well-watered 

plants in the same experiment. Columns 3 and 4 show the range of the environmental factor for which data are available in the database, as well as 

the total number of observations (i.e., number of mean values per species and level of the environmental factor of interest; rounded to the nearest 10). 

Column 5 indicates the number of species for which observations are available for the various traits. Column 6 refers to the form of the dose-response 

curve. Fitted equations were categorized as follows: no relationship (-; Y = a where Y is the scaled value of the phenotypic trait and a is the overall 

average of Y values); linear (L; Y = a + bX where X is the environmental factor), or saturating (S; Y = a (1 – b · e(−cX))). No fit was determined (nd) 

with fewer than 30 datapoints, Column 7 shows the fraction of variability explained by the fitted curve. Column 8 lists the Plasticity Index (PI) 

calculated as the fitted value at [CO2] = 1200 divided by the fitted value at [CO2] = 200; or the fitted value at DLI = 50 divided by the fitted value 

at DLI = 1. Positive values indicating positive trends with the environmental factor of interest, while negative PI values indicate decreasing 

trends; bold numbers indicate a |PI| ≥ 1.5. The Consistency Index (column 9) represents the percentage of cases (species x experiment 

combinations) where the phenotypic value at the highest level of the experimental factor considered was greater than at the lowest level. Values 

lower than 15 or larger than 85 signify highly-consistent positive or negative responses and are indicated in bold. Column 10 shows the Reliability 

Index (RI), based on the number of records in the database for that trait, the number of different species, the range of levels for the environmental 

factor, and the average deviation from the median response. The RI is on a relative scale from 0 (low) to 9 (high reliability level). Column 11 

shows the significance of a bootstrap test comparing differences in PI for stomatal density and stomatal index. The last 3 columns provide the 

values for parameters a, b and, if relevant, c for the equations mentioned above. 
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Table 2. Variation in Plasticity Index (PI) for Stomatal Density (SD) and Stomatal Index (SI) among functional groups, for four 

environmental factors. 

Env. Factor Trait C3 Woody C3 Herb. C4 Herb. 

  PI n p PI n PI n p 

[CO2] 
SD −1.14 220 ns −1.06 320 −1.01 90 ns 

SI −1.13 60 ns −1.04 100 −1.01 30 ns 

DLI 
SD 1.95 170 ns 2.27 150 - 20 - 

SI 2.54 30 ns 1.79 80 - 0 - 

Temperature 
SD 1.88 50 ns 1.41 70 - 0 - 

SI - 0 - - 0 - 0 - 

Water 
SD 1.32 40 ns 1.09 50 - 0 - 

SI - 10 - - 10 - 0 - 

PI data were analyzed based on dose-response curves for three distinct functional groups: C3 woody species, C3 herbaceous species, and C4 herbaceous 

species. The number of data points available for each group is also provided, rounded down to the nearest 10 (n). Each data point represents the average 

value per treatment for each experiment and species or genotype. PI’s and significance values were not calculated for groups with fewer than 30 data 

points. To assess statistical significance, we tested whether the PI of C3 woody species and C4 herbaceous species differed significantly from that of C3 

herbaceous species, by means of bootstrapping (5000 repetitions). None of the contrasts between functional groups showed significant differences. 

The results for light intensity contrast sharply with those 

for CO2, as light exerts a strong influence on SD (Table 1). 

Numerous studies have reported positive responses to higher 

light intensity (e.g., Cooper & Qualls, 1967; Valladares et al., 

2002; Wang et al., 2020b), a trend that is evident in our meta-

analysis as well (Figure 2A). The response of SD is most 

pronounced at low DLI levels, and saturates above 35 mol m−2 

d−1. When considering the range of 1–50 mol quanta m−2 d−1, 

which encompasses DLI’s from the shaded forest floors to low-

latitude deserts exposed mostly to full sunlight, the Plasticity 

Index is 1.93, indicating nearly a doubling of SD over this range. 

This value is intermediate compared to the responses of 85 

ecophysiological traits to DLI, but comparable in size to the 

well-known increases in leaf thickness and photosynthetic 

capacity (Poorter et al., 2019; Poorter et al., 2022b). The 

increase in SD is highly consistent, with a Consistency Index of 

94%, indicating that nearly all experiments and species exhibit 

increases in SD with higher light levels. The Reliability Index 

indicates an intermediate level of confidence. As with [CO2], we 

analyzed whether responses to light intensity varied among 

species groups. While herbaceous C3 species may exhibit 

slightly stronger responses than woody C3 species, these 

differences are small and statistically non-significant (Table 2). 

For each of the groups, the effect of light on SD is markedly 

stronger than CO2. 

Information on SD responses to temperature and water 

availability is much scarcer compared to responses to CO2 and 

light. The dose-response curve for temperature indicates a 

positive association, best described by a linear relationship 

(Figure 3A). The Plasticity Index for temperature is 1.54 over 

the 5–35 °C range, with a Consistency Index of 68%. While the 

Plasticity Index is higher for woody C3 species compared to 

herbaceous C3 species (Table 2), also this species contrast is not 

significant. Water availability or stress was quantified by 

comparing the size of water-stressed plants to control plants, 

assuming that control plants in the compiled experiments were 

adequately watered. No significant relationship was found 

(Figure 1B), which aligns with a low Consistency Index of 47% 

(Table 1). Further separations in species subgroups are given in 

supporting Info S4. We did not analyze responses to varying 

levels of nutrient availability or relative humidity. However, 

small data compilations conducted so far indicate that responses 

to these factors are also mixed (Bertolino, Caine, & Gray, 2019; 

Fanourakis et al., 2020). 

3.2. Stomatal index 

While SD is functionally linked to gas exchange, stomatal 

index (SI) provides greater insight into the developmental 

process of stomatal initiation (Royer, 2003). Similar to SD, SI 

generally exhibits a negative correlation with [CO2], but with a 

slightly steeper slope, indicating greater plasticity (more 

negative PI; Figure 1B). Unlike SD, however, the median values 

for each consecutive 10% of the data do not indicate saturation 

at higher CO2 levels. Therefore, these experimental data do not 

support the concept of a ‘ceiling’ in SI at CO2 concentrations 

above current levels, as proposed by Woodward (1987) and 

Roth-Nebelsick (2005). The Consistency Index for SI deviates 

further from the neutral 50% than that for SD, suggesting a 

slightly more consistent relationship with [CO2]. Nevertheless, 

with a Consistency Index of 32%, this relationship remains 

weak and far from universal. On average, herbaceous C3 and C4 

species, as well as young woody plants, exhibit similar Plasticity 

Indices (Table 2). 

Information on the effect of light on SI is less abundant. 

However, similar to SD, the response of SI to daily light integral 

(DLI) contrasts sharply with its response to [CO2], both in 

direction and strength. The dose-response curve for DLI is 

positive, and follows a saturating pattern (Figure 2B). The 

Plasticity Index for SI is 1.96, and the results exhibit high 

consistency (>90%). Intriguingly, these findings contrast with 

earlier studies by Salisbury (1927) and Poole et al. (1996), 

which were not included in our dataset because they compared 

sun and shade leaves within individual trees. Those studies 

observed differences in SD that largely diminished or 

disappeared when SI was analyzed. We have no clear 

explanation for this discrepancy, but it is possible that the 

regulation of SI at the whole-plant level differs from that within 

a single plant. Additional independent research on this contrast 

would be valuable. 
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Figure 2. Dose-response curves for (A) Stomatal Density (SD) and (B) Stomatal Index (SI) as functions of Daily Light Integral (DLI). 

Data points represent scaled mean values per species and experiment, relative to a reference DLI of 8 mol m−2 d−1. Two and four 

datapoints, respectively, with values exceeding 2.5 are not shown in this graph, but can be inspected in Figs. S03 and S04. For further 

details on data scaling, symbols, and indices, see the legend of Figure 1. 

 

Figure 3. Dose-response curves for Stomatal Density (SD) in relation to (A) Temperature and (B) Water Availability. In (A), data 

points represent scaled mean values per species and experiment, normalized to values at a mean daily temperature of 20 °C. In (B), 

SD values are scaled relative to control plants grown under optimal water availability, with drought stress severity inferred from the 

biomass or leaf area of plants of drought-stressed plants compared to controls. For more information see the legend of Figure 1.

Another potential explanation is that one or more of our 

assumptions may not (fully) hold. Our approach aims to 

integrate as much information as possible, often combining 

data from different subfields of plant biology (Poorter et al., 

2022a). Unfortunately, this information is highly scattered, 

and we rely on the assumption that compiling sufficient data 

for all species or subgroups thereof will allow to establish the 

proper dose-response curves. However, the available data 

remain limited, and to some extent reflect experiments where 

SD was measured for species A and B, whereas others 

focused only on SI for species C and D, rather than 

determining both traits for all species. We therefore also 
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analyzed data for those literature sources where both SD and 

SI were determined for leaves exposed to different light 

intensities. For those cases, we found a PI of 2.39 for SD, and 

1.78 for SI, indicating a weaker response for SI. This aligns 

with the general observation that the size of stomatal 

complexes and pavement cells decreases under higher light 

intensities (Rahim & Fordham, 1991; Thomas, Woodward, & 

Quick, 2004; Oh & Kim 2010). Consequently, SD tends to 

increase with light intensity not only because there are 

relatively more stomatal complexes formed at high light, but 

also because the epidermal cells are smaller in size. Regardless 

of which data are included, the overarching conclusion remains 

that both SI and SD are far more sensitive to prevailing light 

conditions than to ambient CO2 concentration. 

We found insufficient data to construct dose-response 

curves for SI in response to temperature and water 

availability. The limited experimental data available showed 

no significant differences in SI between high-temperature and 

low-temperature treatments, nor between plants exposed to 

low and high water-availability. In both cases the Consistency 

Index was close to 50% (Table 1), indicating no clear pattern. 

Although these findings are based on limited data, they align 

with Royer’s (2003) proposition that SI is largely 

independent of temperature and water availability. However, 

the results also highlight that light intensity is a far more 

significant modulator of SI than previously recognized. 

3.3. The value of SD and SI for paleo-reconstruction 

Stomatal density (SD) and stomatal index (SI) can both 

be measured from fossil leaves with a well-preserved cuticle. 

Of these two traits, SI is currently preferred to estimate CO2 

concentrations over geological timescales (Royer, 2003). 

However, based on the results of the meta-analyses discussed 

above, we would like to highlight several areas of caution 

regarding the use of either of these proxies. 

1. Canopy position of leaves. Across the environmental 

ranges analyzed, the response of SD to [CO2] is relatively 

modest compared to its response to temperature, and only 

slightly greater than its response to water availability (Table 

1). Both SD and SI show weak responses to [CO2] when 

compared to their much stronger responses to variations in 

light intensity. Given the high sensitivity of both traits to daily 

light integral (DLI), it is essential to account for the canopy 

position of fossilized leaves when interpreting stomatal data 

(Poole et al., 1996). In paleo-botanical studies, it is often 

assumed that most leaves in fossil assemblages are canopy 

leaves from light-saturated environments. This assumption is 

based on the idea that upper canopy leaves are more 

abundant, and more likely to be transported by wind to the 

actual deposition sites (Ferguson, 1985; Greenwood, 1991). 

However, light levels in a tree canopy can easily decrease by 

half within the top 4 m of a tree crown (Fauset et al., 2017). 

Assuming a DLI of 30 mol m−2 d−1 above the canopy, and that 

sun and shade leaves of trees follow the same trends as the 

fitted curve in Figure 2B, we calculate that leaves 4 m below 

the top of the tree canopy would have approximately 6% lower 

SI. This reduction represents half the 12% variation in SI 

observed across the CO2 range of 200–1200 ppm range (Table 

1), underscoring the importance of light gradients within the 

canopy (Poole et al., 1996).  

Several proxies can help distinguish sun leaves from 

shade leaves in fossil specimens. Sun leaves typically have 

smaller epidermal cells, less undulated cell walls and greater 
13C discrimination compared to shade leaves (Kürschner, 

1997; Graham et al., 2014; Šantrůček et al., 2014; Dunn et al., 

2015; Poorter et al., 2022a). Although some studies indicate 

that the majority of fossil leaves were likely exposed to high-

light conditions (Ferguson, 1985; Greenwood, 1991; 

Kürschner, 1997), others indicate considerable variation in 

the light environments experienced by fossil leaves (Bush et 

al., 2017). Therefore, it is prudent to infer the original canopy 

position of fossil leaves when using them for paleo-CO2 

reconstructions. For example, Reichgelt et al. (2020) 

estimated CO2 levels from early Miocene fossil leaves by 

selecting those with relatively high cell density, minimal cell 

undulation and high leaf ð13C. Since cell density and leaf ð13C 

values are already key input parameters in current gas-

exchange models for CO2 estimation (Franks et al., 2014), 

incorporating these criteria does not require much additional 

analytical work. Consequently, this approach should be 

considered standard protocol when interpreting fossil leaves 

for CO2 reconstructions.  

The above analysis relies on the assumption that the dose-

response curve for SD and SI, as determined for whole plants 

grown at different DLIs, is also applicable to leaves that 

experience varying light availability within a tree. While this 

assumption holds for a range of leaf-level traits (cf. Niinemets, 

Keenan, & Hallik, 2015; Poorter et al., 2019), the few studies 

comparing the SI of sun and shade leaves in individual trees have 

reported much larger differences in SD than in SI (Salisbury, 

1927; Poole et al., 1996; Kürschner, 1997). As noted earlier, this 

aspect warrants further investigation. 

2. Above-canopy light availability. The issue of DLI 

related to canopy position extends to broader above-canopy 

light conditions. Assuming a fixed level of DLI for canopy 

leaves across geological eras overlooks uncertainties 

introduced by variables such as cloud cover, which can vary 

and affect above-canopy light availability (Stephens, 2005). 

Based on the saturation observed in the dose-response curves 

(Figure 2A,B), we would expect the SD or SI of plants in 

locations with minimal cloud cover, such as desert areas at 

low latitudes, to be relatively unaffected. However, fossil 

leaves are often better preserved in wetter areas, where cloud 

cover can substantially influence DLI, and consequently SD 

and SI. Of particular interest are environments with few or no 

modern analogues, such as temperate polar forests during the 

hothouse climates of the Cretaceous and Eocene (e.g., 

Herman & Spicer, 2010; West, Greenwood, & Basinger, 

2019). The above-canopy light conditions in these 

environments are difficult to reconstruct and the associated 

ecophysiological adaptions are challenging to constrain 
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(Brentnall et al., 2005; Konrad, Roth-Nebelsick, & Traiser, 

2023). Nonetheless, fossil leaves from these environments do 

get used in paleo-CO2 reconstructions (Wolfe et al., 2017; 

Wang et al., 2020c).  

3. Between and within-species specificity. We 

established generalized dose-response curves based on the 

compiled data, showing consistent positive responses to light, 

but variable responses to [CO2] (Table 1). This variability 

poses a challenge for accurately estimating paleo-CO2 levels. 

A key question is whether this variation stems from between 

or within species differences in stomatal responses. Although 

we found slightly stronger responses to [CO2] in C3 

herbaceous and woody species compared to C4 species, these 

differences were not statistically significant. Similarly, there 

were no significant differences in plasticity between C3 herbs 

and woody species (Table 2). We also tested whether SD 

responses were different between deciduous and evergreen 

tree species. For CO2, PI was marginally and non-

significantly different (−1.05 and −1.14, respectively), but for 

light intensity, evergreens showed higher plasticity than 

deciduous species (2.20 and 1.56, respectively, respectively), 

with 0.05 < p < 0.10. Since most fossilized leaves stem from 

woody species, and have a better chance to be preserved when 

the leaves are sturdy and therefore of evergreen nature, this 

may aggravate the problems with interpretation mentioned 

above. 

In paleobotany, researchers calibrate absolute values of 

SD and SI in fossil leaves with those of their nearest-living 

relatives growing under known CO2 concentrations 

(McElwain & Steinthorsdottir (2017). However, substantial 

species-level differences in SD and SI, as well as variations 

between genotypes, have been reported (e.g., Christophel & 

Rowett, 1996; Hovenden & Schimanski, 2000; Wall et al., 

2023). Consequently, selecting a genotype from a nearest-

living relative introduces additional uncertainty into CO2 

estimates. Another source of uncertainty stems from within-

species variability in the relative CO2-response observed 

across experiments. In our compilation, such repetition was 

available for only a few species, and primarily in sufficient 

numbers for SD. In Figure 4, we show the responses for the 

most-frequently studied species, Triticum aestivum, and the 

‘living fossil’ Ginkgo biloba. For both species, studies report 

both positive and negative responses to increasing [CO2]. 

However, the overall pattern is not very different from the 

generalized dose-response curve shown in Figure 2A. This 

suggests that relying on data for a given species from only 

one or two experiments may not produce a robust calibration 

curve. To better capture these species-specific or genotypic 

responses, more comprehensive datasets are required. 

Nonetheless, given the within and across species variation of 

SI and SD in response to [CO2], it is unlikely that modern 

living species, such as Ginkgo biloba, can be used to estimate 

CO2 concentrations in deep time, as the genetic and 

ecophysiological variability cannot be constrained. 

 

Figure 4. Effect of ambient CO2 on Stomatal Density (SD) 

as reported in different experiments for (A) Triticum 

aestivum, and (B) Ginkgo biloba. The orange line 

represents the overall fit from Figure 1A. Data points 

connected by a line are mean values per experiment. All 

data are scaled relative to the phenotypic values at a 

reference [CO2] of 450 ppm. 

4. Experimental data vs using historical leaves. To 

estimate paleo-CO2 levels, transfer functions can be established 

between CO2 concentration and SI or SD. These functions are 

analogues to the dose-response curves we previously 

discussed, but with inverted axes. Several approaches have 

been used to derive these transfer functions. These include, 

from shorter to longer timespans: (1) plants grown 

experimentally under various CO2 concentrations, (2) 

herbarium leaves collected during periods with known CO2 

levels, and (3) leaves from sub-recent sediments calibrated 

against CO2 data from ice-core records. We compared five 

transfer functions derived from herbarium records and 

sedimentary leaves, converting them into CO2 dose-response 

curves and scaling them similarly as our general dose-response 

curve (Figure 5). The difference in slope between the 

generalized dose-response curve on the one hand and those 

derived from the published transfer functions on the other is 

striking. The latter exhibit much steeper slopes compared to the 

curve based on controlled experiments. This was previously 

noted by Beerling & Chaloner (1992) and Royer (2001). They 

postulated that long-term genetic pressures on stomatal 

initiation may outweigh the more immediate, modest plastic 

response. They further suggested that it might take 100–1000 

years for plants to fully adjust to new atmospheric CO2 levels. 

For trees this would imply adaptation over 2–10 generations. 

From an ecophysiological perspective, reduced stomatal 

density under elevated CO2 seems plausible, as a lower SD 

could maintain sufficient conductance for CO2 diffusion. It is 

not easy to experimentally substantiate this thesis, but the 

scarcely-available evidence is not supportive. Yang et al. 

(2023) conducted an experiment where rice was grown over 

five consecutive generations under either control or elevated 

CO2. They found a marginal increase in SD due to [CO2], in 

both the 1st and 5th generation, rather than the anticipated 

decrease. Their study, the first of its kind to assess SD across 

so many generations, offers little support for a substantial and 

negative generational effect. 
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Figure 5. Comparison of the generalized dose-response 

curve for Stomatal Index (SI) with respect to [CO2] (shown 

in Figure 1B) with transfer functions derived for Ocotea 

foetens and Laurus nobilis (Kürschner, Kvaček, & 

Dilcher, 2008), Laurus nobilis and Ginkgo biloba 

(McElwain & Chaloner, 1996), and Ginkgo biloba (Barclay 

& Wing, 2016). 

Alternatively, the marginal change observed in 

experimental plants (Figure 5) could be attributed to the fact 

that they all originated from seeds of plants grown under 

present-day CO2 levels, and were often pre-grown under 

control CO2 levels during seedling establishment. Studies 

show that older leaves signal their growth conditions to 

younger leaves, influencing SD and SI in newly-developing 

leaves in response to both CO2 concentration (Lake et al., 

2001) and light intensity (Thomas, Woodward, & Quick, 

2004). This suggests that a temporary carry-over effect from 

past CO₂ conditions might lead to an underestimation of the 

CO2 effect in experimental approaches. However, the median 

duration of CO2 experiments in our compilation was 98 days. 

For comparison, even a single day of exposure to different 

light conditions already affects the final SD (Schoch et al., 

1980). Thus, assuming similar dynamics, we expect 98 days 

of CO2 exposure to be sufficient to eliminate legacy effects. 

Another possible explanation for the observed discrepancy is 

that stomatal development in field-collected plants over 

extended time periods may be influenced by co-varying 

environmental factors, such as cooler temperatures during 

periods of lower [CO2] (Figure 3A). Finally, publication bias 

could play a role, with studies reporting transfer functions with 

shallow slopes being less likely to be submitted or accepted for 

publication. In any case, understanding the mechanisms 

driving the difference in sensitivity between contemporary 

experimental data and field-collected historical measurements 

would be helpful to improve confidence in transfer functions 

based on field data. 

5. Extrapolating transfer functions. A final 

consideration is that transfer functions derived from 

herbarium or sediment leaves, and calibrated using CO2 

concentrations from ice cores, are only validated within the 

range of 280–400 ppm, as these are the data for which we 

have independent CO2 measurements. Any values beyond 

this range represent extrapolations, which complicates the use 

of these transfer functions for periods when CO2 levels 

exceeded current values.  

The toolbox available to paleobotanist is limited, and 

their methodologies cannot be as refined as those employed 

by ecophysiologists studying living plants. Nonetheless, the 

questions paleobotanists address are crucial, and reliable 

proxies for past CO2 concentrations are indispensable for 

understanding system Earth. Unfortunately, stomatal density 

and stomatal index responses to CO2 suffer from considerable 

variability and inconsistency. New approaches that integrate 

(eco)physiological and morphological traits with modeling 

techniques (Franks et al., 2014; Konrad et al., 2017) hold 

greater promise. These methods are increasingly replacing SD- 

and SI-based approaches due to their improved reliability. 

Despite this progress, it remains prudent to base paleo-CO₂ 

reconstructions on a diverse array of proxies. As 

demonstrated effectively by Hönisch et al. (2023), combining 

multiple lines of evidence enhances confidence in estimates 

and provides a more comprehensive understanding of past 

atmospheric conditions. 

4. Conclusions 

We developed generalized dose-response curves for 

stomatal density (SD) and stomatal index (SI) in response to 

[CO2] and light intensity, along with additional curves for SD 

as dependent on temperature and water availability. Although 

both SD and SI exhibited negative correlations with [CO2], 

these responses were relatively small and inconsistent. In 

contrast, their responses to changes in Daily Light Integral 

(DLI) were significantly stronger and more consistent, 

emphasizing the dominant influence of light in shaping SD 

and SI. Consequently, the position of leaves within the 

canopy or variations in light availability across different eras 

introduces significant complexity, further challenging the 

reliability of fossil leaf stomata as robust paleoproxies for 

reconstructing past atmospheric CO2 concentrations. 
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