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Abstract: This work tries to elucidate the reliability of artificial neural networks 
(ANN) to predict complex processes. This way, breakthrough curves and 
breakthrough times corresponding to 243 different scenarios of the multicomponent 
adsorption of H2, CO and CO2 in a fixed bed from a large set of runs (rather than a 
single run, which is the majority situation reported in the literature) generated 
through Aspen AdsorptionTM, were fitted to 600 ANNs configurations through a 
homemade software running in Fortran and 8 additional algorithms contained in the 
Scikit-Learn, a Python module for machine learning. To generate a consistent ANN, 
data obtained through Aspen AdsorptionTM were randomly divided into two groups: 
training (80% of the breakthrough curves and breakthrough times) and validation 
(20% of them). This procedure was able to properly predict single breakthrough 
curves. However, the capacity of the ANN for predicting a set of breakthrough 
curves was not so good as expected although the trends followed by the prediction 
curves could be used to make a good estimation of the dynamic behaviour of 
adsorption process. Finally, it was observed a good agreement between the values 
of the breakthrough times corresponding to the reduction of the H2 concentration in 
the outlet stream of 2% computed by Aspen AdsorptionTM and used for validation 
and those predicted by the best ANN model. The general procedure here followed 
could be equally used for analyzing real set of adsorption experiments or other 
different complex processes as described here. 

 Keywords: digital twin; multicomponent adsorption; Aspen AdsorptionTM 

1. Introduction 

Computational tools based on artificial neural networks (ANNs), which are nonlinear regression algorithms 
in the Machine Learning field for classification and prediction [1], have been successfully used by both academia 
and industry, and their use is common in Artificial Intelligence (AI). From them, it is possible to obtain a digital 
twin (DT), which is a virtual model created to represent processes, which can in turn be updated and maintained 
in real time. AI has introduced new possibilities for modeling and simulating chemical processes [2]. Industry 4.0 
requires this piece of knowledge from chemical and process engineers since process plants have large volumes of 
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stored historical data obtained through sensors that measure thousands of variables in the order of seconds [3]. 
Chemical engineers use ANNs in process prediction and classification when there is a lack of both physical 
understanding of the problem and statistical variations of the observable data [3]. 

Modeling, simulation, and optimization are essential activities among researchers to meet the challenges 
produced by environmental and commercial restrictions. In a recent paper [4], DTs based on ANNs were generated 
for predicting the steady state of styrene production from benzene. The data used were produced from Aspen 
HYSYS, which led to determining the operating conditions of pre-heating, reaction, and stabilization units. In 
another recent paper [5], a DT was used to obtain a virtual representation of the experimental data from an alkaline 
leaching process of black masses from spent batteries. For this purpose, 90% of the experimental data were used 
for training a supervised learning procedure involving 600 different artificial neural networks (ANNs) derived 
from twelve different activation functions. 

A neural network contains hyperparameters to be tuned prior to training in order to achieve the best 
configuration. Particularly, activation functions determine the output of the model, its accuracy, and the 
computational efficiency of training a model; therefore, they are an essential part of the structure of neural 
networks. The Sigmoid function, Hyperbolic Tangent (TanH), and ReLU (Rectified Linear Unit) are the most 
common in Chemical Engineering, although many more have been defined [1]. A remarkable challenge is to find 
the best configuration of layers and activation functions that fit the data of a process. 

Another important issue is to know the capability of the ANNs to predict the behaviour of a process when 
many independent and dependent variables are involved. In this context, the dynamics of adsorption in a fixed bed 
has been used for dilucidating the capability of the ANNS to describe a complex process. As observed in the 
literature, most of the studies are focused on the prediction of both the capacity of adsorption and the breakthrough 
times. Some of them are focused on the prediction of the adsorption dynamic (breakthrough curves) but consider 
single experiments rather than a set of experiments as proposed here. 

The breakthrough time is an important factor in Pressure Swing Adsorption (PSA) cycle design and depends 
on the adsorption capacity at given conditions, such as temperature, composition, pressure and so on. Specifically, 
the breakthrough time of hydrogen is a key factor in determining the performance of PSA [6], which is a common 
method to obtain high-purity hydrogen. The breakthrough time can well reflect the adsorption dynamics and help 
PSA cycle design. In order to avoid time-consuming and labor-intensive breakthrough curve experiments, it is 
necessary to develop a fast and accurate surrogate model [6]. ANNs are a good candidate as demonstrated more 
than 20 years ago [7]. Thus, some studies have been reported for obtaining ANN-based surrogate models that are 
able to efficiently compute the transient adsorption behavior and breakthrough times without altering the capability 
of first-principles models [8]. 

Despite these efforts, challenges remain in studying multicomponent breakthrough curves for hydrogen 
purification. ANNs and interior point algorithms have been used to optimize the breakthrough time of individual 
gases in a three-component gas H2/CO/CH4 system [9]. This method can only ensure that the breakthrough time 
of CO or CH4 is maximum but cannot guarantee that the breakthrough time of both CO and CH4 can be maximized 
simultaneously. 

ANNs were also applied to model the sorption of dyes blue No. 1 and red No. 2 in aqueous solutions using 
magnesium and aluminum double layer hydroxides (LDH) interspersed with nitrate ions [10]. Single experimental 
breakthrough curves were compared with data obtained in the ANN modeling, using four inputs and one output 
variable for each dye showing an excellent correlation (r2 = 0. 99). Three machine learning models (random forest, 
support vector machine, and artificial neural network) were developed to predict the adsorption capacity of 
microplastics [11]. The ANN model has been widely used to predict pollutant adsorption in fixed beds under 
different operating parameters in the treatment of pollutants [12–15]. Modified biochar was used in the adsorption 
performance of sulfamethoxazole [16]. Based on batch experiment results, an artificial neural network (ANN) 
model was developed to describe the adsorption data of this pollutant sufficiently (r2 > 0.99). Also, ANNs have 
been used to describe the adsorption of Cr(VI) from aqueous solutions using activated carbon produced from waste 
tires [17]. The conjugate gradient backpropagation algorithm was found to be the best training one among all the 
training algorithms, with a root mean squared error (RSME) of 5.894 and an r2 of 0.985. The dynamic of the 
tetracycline adsorption process using raw rice husk was also modeled using ANNs with a correlation coefficient 
of 0.999 [18]. 

In a review reported recently, the use of ANNs for evaluating isothermal, kinetic, and thermodynamic 
parameters in multicomponent adsorption on biomaterials was discussed [19]. The cyclohexane and n-hexane 
adsorption capacity over graphene was analyzed with a neural network, which was able to predict the experimental 
values with a correlation coefficient of 0.99966 [20]. In other reviews, the modeling of adsorption of organic and 
inorganic pollutants from water using ANNs [19,21,22] was reported. ANNs were also used to emulate adsorption 
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and chromatography processes [23]. The proposed approach focuses on learning the underlying governing partial 
differential equations in the form of a physics-constrained loss function to simulate adsorption processes 
accurately. The results demonstrated that the purity and recovery calculated from the neural network-based 
simulations were within 2.5% of the detailed model predictions. A deep learning artificial neural network 
framework was also used to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material 
obtained from biomass wastes [24]. An artificial neural network (ANN) model was improved to estimate the 
efficiency of Cr(III) and Cr(VI) ions adsorption in aqueous solution on natural, acid-activated and base-activated 
cherry stalks [25]. A modeling study using ANNs was performed in adsorptive removal of Congo Red on activated 
hazelnut [26], revealing a correlation of 98%. An ANN model was also able to predict with a higher coefficient of 
determination and lower root mean square error values the adsorption capacity of organic waste-derived carbon-
based materials as a function of the. adsorbent synthesis conditions, adsorbent physical characteristics and 
adsorption experimental conditions [27]. Feature importance using Shapley additive explanations analysis 
suggested that the adsorption characteristics with 51.4% were the most important in the ANN prediction. Many 
more studies have been reported that use ANNs for the prediction of adsorption processes: CO2 adsorption in 
metal-organic frameworks (MOFs) [28], silicic acid removal in a fixed-bed column using a modified resin [29], 
fluoride removal efficiency using neutralized activated red mud from aqueous medium in a continuous fixed bed 
column [30], time allocation of a three-bed adsorption chiller using an ANN [31], competitive adsorption of dyes 
on Gemini Polymeric nanoarchitecture [32], fixed-bed phenolic compounds adsorption onto activated date palm 
biochar [33], mercury adsorption by a dendrimer-grafted polyacrylonitrile fiber in fixed-bed column [34], organic 
pollutants adsorption on activated carbon [35], adsorption of sunset yellow onto neodymium modified ordered 
mesoporous carbon [36], Cu(II) adsorption from an aqueous solution [37], heavy metals adsorption dynamic on 
surfactant decorated graphene [14], color adsorption from an industrial textile effluent using modified sugarcane 
bagasse [38], asphaltenes adsorption by nanocomposites [39], adsorption of methylene blue in a fixed bed column 
[40], Pb(II) adsorption [41,42], malachite green adsorption by tea waste [43], Cr(VI) adsorption from aqueous 
solution with Aliquat 336-derived adsorbents [44], Ni(II) adsorption from aqueous solution by peanut shell [45], 
Sr(II) adsorption from aqueous solution by natural calcium-based materials [46], and adsorption chromatography 
of chitosanases produced by Paenibacillus ehimensis [47], among others. 

On the other hand, Aspen AdsorptionTM, which is integrated into the AspenTech software, is a very powerful 
tool for simulating adsorption processes. Aspen Adsorption enables process simulation and optimization for a wide 
range of industrial gas and liquid adsorption processes, including reactive adsorption, ion exchange, and cyclic 
processes. Despite that few studies are using Aspen AdsorptionTM as a tool for simulating adsorption processes 
[48]. Some examples have been reported in the literature: a single bed Pressure Swing Adsorption (PSA) unit for 
the carbon capture process of CO2 and H2 [48], different configuration of adsorption units including pressure swing 
ones [49], six-step pressure swing adsorption process for biogas separation on a commercial scale [50], etc. In a 
recent study [51], an ANN was used to optimize a six-step two-bed pressure swing adsorption system for hydrogen 
purification. The pressure swing adsorption model used for describing the hydrogen purification was developed 
on the Aspen/Adsorption software platform. 

This work tries to elucidate the reliability of ANNs to predict a complex process. Thus, the dynamics of a set 
of experiments of adsorption in a fixed bed were considered. As mentioned above, this study faces the capability 
of the ANNs to predict both the breakthrough curves and the breakthrough times of multicomponent adsorption in 
a fixed bed from a large set of runs (rather than a single run, which is the majority situation reported in the 
literature) generated through Aspen AdsorptionTM. The system considered was constituted by a stream containing 
H2, CO and CO2. Basic data for performing the simulation was taken and adapted from the literature [52]. The 
adsorbent used was a mixture with the same amount by weight of zeolite and activated carbon. From that, 243 
different scenarios were generated with the software mentioned above. From them, it was selected sets of data 
depending of the ending time of the simulation: 25, 50, 100 and 200 s. The different sets were fitted to 600 ANNs 
configurations through homemade software running in Fortran. Eight additional algorithms contained in the Scikit-
Learn, a Python module for machine learning: Linear regression, Ridge, Lasso, Lars, LassoLars, 
MultiTaskElasticNet, and OrthogonalMatchingPursuit, were also considered. An MS Escel-VBA application was 
built to control the data transfer from this application to the Fortran and Python ones. Data collected were compared 
and the best results were selected. Regarding the input variables, seven were considered in this study: time on 
stream, compositions in molar fraction of methane, carbon monoxide and hydrogen, and pressure at the inlet stream 
to the process and the height and diameter of the bed. Three output variables were considered: molar fractions of 
methane, carbon monoxide and hydrogen at the effluent stream of the process. To generate a consistent ANN, the 
data obtained through Aspen AdsorptionTM was randomly divided into two groups: (i) 80% of the breakthrough 
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curves and breakthrough times, which were used for ANNs training, and (ii) 20% of them, which were used for 
validation. 

2. Materials and Methods 

2.1. Aspen AdsorptionTM 

Aspen AdsorptionTM was used for generating the 243 scenarios mentioned above. Before running a scenario, 
a set of steps should be followed (Figures S1–S5): fluid package definition (Peng-Robinson) and components 
selection (CH4, CO and H2), simulation mode definition (in this case “Gas Dynamic”), blocks selection (the main 
one is “Gas Bed”), and configuration of the geometric properties of the bed and its layers. Figure 1 shows the final 
flowsheet used in the simulation. 

 

Figure 1. Flowsheet used for the simulation of a fixed bed with Aspen AdsorptionTM. Data of the seven input 
variables and the three output variables were recorded each second of the simulation run. 

2.2. ANNs 

In a previous work [5], the procedure for training and validating models here followed is described, which is 
more extensively explained in the Supplementary Materials section. Apart from the seven activation functions 
listed in Table 1 [4,53–57], additional models taken from the Python module for machine learning Scikit-Learn 
(https://scikit-learn.org/stable/, accessed on 15 January 2025): Linear regression, Ridge, Lasso, Lars, LassoLars, 
MultiTaskElasticNet, and OrthogonalMatchingPursuit, were also considered. In the input layer, the number of 
input variables (independent variables) fixed the number of neurons of the layer, whereas in the output layer, the 
numbers of neurons were fixed by the number of output variables (dependent variables). One or two hidden layers 
were considered. In this way, the neural network learning capacity was determined by the number of hidden layers 
as well as the neurons contained in each layer. By combining the seven activation functions listed in Table 1 and 
considering 2 or 3 layers, 600 different configurations could be defined. An MS Excel-VBA application (register 
number TXu 2-443-000 of the Copyright Office of USA) was built to control the data transfer from this application 
to other two (system model): an executable file generated from a Fortran code which sped up the numerical 
computations of the 600 models derived from Table 1, and an script written in Python to run the 8 models included 
in the Scikit-Learn module. The MS Excel-VBA collected the results generated by these two applications and 
performed the fitting and validation processes of all the models considered here. Adding up the functions 
considered from Scikit-Learn, the total number of models tested was 608. Seven input variables were considered 
in this study: time on stream, compositions in molar fraction of methane, carbon monoxide and hydrogen, and 
pressure at the inlet stream to the process and the height and diameter of the bed. Three output variables were 
considered: molar fractions of methane, carbon monoxide and hydrogen at the effluent stream of the process. 
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Table 1. Activation functions used in this study for generating ANNs [4,53–57]. 

Activation Function ID Code Mathematical Expression 

Log-Sigmoid LOGSIG 𝑎 ൌ
1

1  𝑒ିೕ
 

Hyperbolic Tangent Sigmoid HTANSIG 𝑎 ൌ
𝑒ೕ െ 𝑒ିೕ

𝑒ೕ  𝑒ିೕ
 

Linear LINEAR 𝑎 ൌ 𝑛 

Swish SWISH 𝑎 ൌ
𝑛

1  𝑒ିೕ
 

ELU ELU 𝑎 ൌ ቊ
𝛼ሺ𝑒ೕ െ 1ሻ    𝑛 ൏ 0
𝑛                      𝑛  0

  

RELU RELU 𝑎 ൌ ൜
0.01𝑛             𝑛  0
𝑛                      𝑛  0 

Polynomial * POL 𝑎 ൌ 𝑛
  

* where i is in the range from 1 to the total neurons in layer j. 

The training process was performed by minimizing the function 𝜒ଶ by nonlinear regression by using the 
Levenberg-Marquardt algorithm [58]: 

𝜒
ଶ ൌ ∑ ቂ∑ ൫𝑦 െ 𝑎

௦ ൯
ଶ

ୀଵ ቃ
ୀଵ   (1)

where m is the number of experiments, n is the number of output variables, yik and 𝑎
௦  are the values of the output 

experimental variables and the values predicted by the neural network that corresponds to scenario j, respectively. 
The regression procedure was maintained whenever the relative error (RE) was lower than 10−4. The RE was 

defined as follows: 

𝑅𝐸 ൌ ቤ
൫ఞೖ

మ൯ೕశభି൫ఞೖ
మ൯ೕ

൫ఞೖ
మ൯ೕ

ቤ  (2)

being j the number of iterations in the non-linear regression procedure, comparing the results of the prediction 
made by the ANN in the scenario j and the scenario j + 1. 

Once the fitting process for a given scenario is finished, the above-defined function 𝜒ଶ, the Pearson’s ratio 
coefficient for the model, r, and the root mean squared error (RSME) were collected. The RMSE was defined as: 

𝑅𝑀𝑆𝐸 ൌ  ට
ఞೕ
మ

ெ
  (3)

To minimize overfitting in the validation process, a discrimination procedure was established. For this 
purpose, a function presented by Equation (1) was defined for the experiments used for the validation (mV), 
obtaining Equation (4): 

൫𝜒
ଶ൯


ൌ ∑ ቂ∑ ൫𝑦 െ 𝑎

௦ ൯
ଶ

ୀଵ ቃ 
ୀଵ   (4)

This way, a new function was defined from Equations (1) and (4): 

൫𝜒
ଶ൯


ൌ 𝜒

ଶ  ൫𝜒
ଶ൯


 (5)

Finally, a non-linear regression was performed with the selected model until a new value of RE lower than 
10−6 was reached. With the values of the parameters finally obtained, the validation procedure was completed. In 
both cases, the final fitting and validation, the above defined function 𝜒ଶ plus those defined for each output 
variable k, can be expressed as 𝜒ଶ : 

𝜒
ଶ ൌ ∑ ൫𝑦 െ 𝑎

௦ ൯
ଶ

 
ୀଵ   (6)

To generate a consistent ANN, the data obtained through Aspen AdsorptionTM was randomly divided into 
two groups: (i) 80% of the breakthrough curves were used for ANNs training, and (ii) 20% of them were used for 
validation. 

The MS Excel-VBA application described above was able to compute the Pearson’s ratio coefficient for the 
model, r, the Shapley values through the Kernel SHAP approximation [59], and the dimensionless sensitivity 
values derived from the partial derivatives method [60]. In this study, the latter was used for comparative purposes. 
Figure 2 shows a schematic representation of the computational procedure described above. 
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Figure 2. Block diagram of the numerical procedure followed for selecting the best model for representing 
breakthrough curves. 

An important issue of this fitting process is the time required to fit the huge number of data. Taking as a 
reference the set of data corresponding to a time on stream of 200 s, about 50,000 data consisting of seven 
independent variables and three dependent ones were fitted to the 608 models in a time lower than 3 h using a 
computer with an Intel Core i7-12700K processor. This time included the discrimination and validation processes. 

The results listed in Tables 2–4 and Table S1 include a nomenclature to identify a particular ANN. For 
example, 7-SWISH-3-HTANSIG-4-LINEAR-3 represents a ANN with three layer of neurons: the first one 
receives the 7 input variables and contains 3 neurons with a Swish activation function, the second one receives the 
3 inputs from the first one and contains 4 neurons with a Hyperbolic Tangent Sigmoid activation function; and, 
the third one receives 4 inputs from the second one and contains 3 neurons (coincidental with the number of output 
variables of the system: molar fractions of the three species involved) with a Linear activation function. Figure 3 
shows as an example the representation of the 7-SWISH-3-HTANSIG-4-LINEAR-3 artificial neural network. 

Table 2. The best five ANN models that fitted a breakthrough curve obtained with Aspen AdsorptionTM for the 
following input variables: bed height, 1 m; bed diameter, 0.015 m; pressure, 2000 kPa; molar fractions of CH4, CO 
and H2, 0.35, 0.14, 0.51, respectively. 

Order Model RMSE (r2)training (χ2)T 
1 7-RELU-4-SWISH-4-LINEAR-3 1.474 × 10−2 0.988 4.365 × 10−2 
2 7-RELU-4-SWISH-5-LINEAR-3 1.483 × 10−2 0.987 4.421 × 10−2 
3 7-ELU-5-POL-5-LINEAR-3 1.987 × 10−2 0.977 7.936 × 10−2 
4 7-RELU-4-RELU-2-LINEAR-3 2.018 × 10−2 0.977 8.184 × 10−2 
5 7-RELU-2-ELU-4-LINEAR-3 2.025 × 10−2 0.976 8.214 × 10−2 

Table 3. Best ANN models that fitted the data obtained with each of the time on stream. Number of breakthrough 
curves for training: 194. Number of breakthrough curves for validation: 49. 

Time on stream = 25 s 
Number of data for training = 5044. Number of data for validation = 1274 

Model RMSE (r2)training ሺ𝜒ଶሻT (r2)validation 
7-RELU-3- HTANSIG-3-LINEAR-3 1.556 × 10−2 0.986 1.487 0.903 

Time on stream = 50 s 
Number of data for training = 9894. Number of data for validation = 2499 

SYSTEM MODEL

(MS EXCEL-VBA)

FIITING TO THE 600 
MODELS DERIVED 

FROM TABLE 1

(FORTRAN)

Levenberg-Marquardt 
Algorithm

Evaluation of 
RMSE and r

FITTING TO THE 8 
MODELS TAKEN FROM 

SCIKIT-LEARN

(PYTHON)

Evaluation of 
RMSE and r

DISCRIMINATION and 
VALIDATION

(MS EXCEL-VBA)

Selection of the best 
scenario with the 
lowest value of 
(V, computation 

of r, evaluation of 
both dimensionless

sensitivity and 
Shapley values 

Experimental Data

243 Scenarios at t= 25, 50, 100 and 200 s

Input variables: time, P, yCH4, yCO, and yH2 in inlet stream and height and 
diameter of the bed

Output variables (outlet stream): , yCH4, yCO, yH2
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Model RMSE (r2)training ሺ𝜒ଶሻT (r2)validation 
7-SWISH-3-POL-3-LINEAR-3 5.303 × 10−2 0.916 3.646 × 10 0.903 

Time on stream = 100 s 
Number of data for training = 19,594. Number of data for validation = 4949 

Model RMSE (r2)training ሺ𝜒ଶሻT (r2)validation 
7-ELU-5-LINEAR-3 2.311 × 10−2 0.990 1.363 × 10 0.987 

Time on stream = 200 s 
Number of data for training = 38,994.Number of data for validation = 9849 

Model RMSE (r2)training ሺ𝜒ଶሻT (r2)validation 
7-RELU-2-HTANSIG-4-LINEAR-3 7.339 × 10−2 0.906 2.629 × 102 0.907 

Table 4. Relative importance in percentage for each set of times on stream data of the independent variables (inputs) 
in each dependent variable (outputs) evaluated by the partial derivates method [60]. 

Time on Stream = 25 s 
 Outputs 

Inputs (yCH4)outlet (yCO)outlet (yH2)outtlet 
Time (s) 43.16 (+) 43.16 (+) 43.16 (−) 

Height of the bed (m) 1.87 (−) 1.87 (−) 1.87 (+) 
Bed diameter (m) 0.10 (−) 0.10 (−) 0.10 (+) 

Pressure (kPa) 54.39 (+) 54.39 (+) 54.39 (−) 
(yCH4)inlet 0.27 (+) 0.27 (+) 0.27 (−) 
(yCO)inlet 0.04 (+) 0.04 (+) 0.04 (−) 
(yH2)inlet 0.17 (+) 0.17 (+) 0.17 (−) 

Time on Stream = 50 s 
 Outputs 

Inputs (yCH4)outlet (yCO)outlet (yH2)outtlet 
Time (s) 62.52 (+) 53.72 (+) 60.97 (−) 

Height of the bed (m) 1.56 (−) 2.30 (−) 1.69 (+) 
Bed diameter (m) 0.10 (−) 0.06 (−) 0.09 (+) 

Pressure (kPa) 29.26 (+) 36.29 (+) 30.51 (−) 
(yCH4)inlet 1.31 (−) 1.74 (−) 1.38 (+) 
(yCO)inlet 0.33 (−) 0.29 (−) 0.32 (+) 
(yH2)inlet 4.92 (−) 5.60 (−) 5.04 (+) 

Time on Stream = 100 s 
 Outputs 

Inputs (yCH4)outlet (yCO)outlet (yH2)outtlet 
Time (s) 73.32 (+) 80.98 (+) 74.70 (−) 

Height of the bed (m) 2.18 (−) 2.51 (−) 2.24 (+) 
Bed diameter (m) 0.05 (−) 0.06 (−) 0.05 (+) 

Pressure (kPa) 23.72 (+) 15.96 (+) 22.33 (−) 
(yCH4)inlet 0.35 (+) 0.10 (+) 0.30 (−) 
(yCO)inlet 0.01 (+) 0.11 (+) 0.03 (−) 
(yH2)inlet 0.37 (−) 0.28 (−) 0.35 (+) 

Time on Stream = 200 s 
 Outputs 

Inputs (yCH4)outlet (yCO)outlet (yH2)outtlet 
Time (s) 77.39 (+) 76.49 (+) 77.21 (−) 

Height of the bed (m) 4.30 (−) 4.68 (−) 4.38 (+) 
Bed diameter (m) 0.24 (−) 0.21 (−) 0.23 (+) 

Pressure (kPa) 16.85 (+) 18.09 (+) 17.10 (−) 
(yCH4)inlet 0.52 (+) 0.36 (+) 0.48 (−) 
(yCO)inlet 0.03 (+) 0.04 (+) 0.04 (−) 
(yH2)inlet 0.67 (−) 0.13 (−) 0.56 (+) 
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Figure 3. Representation of the 7-SWISH-3-HTANSIG-4-LINEAR-3 artificial neural network. 
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3. Results 

As above mentioned, 243 scenarios were generated with Aspen AdsorptionTM by using data taken and adapted 
from literature [53]. The adsorbent considered was a mixture with the same amount by weight of zeolite and 
activated carbon. Figure 4 shows the general physical parameters used by Aspen AdsorptionTM. Table 5 lists the 
properties of the inlet stream to the process (Feed in Figure 1) whereas Table 6 does the values of the parameters 
used for generating all the scenarios. 

 

Figure 4. Physical properties of the fixed bed used as the reference. 

Table 5. Properties of the inlet stream to the process (Feed in Figure 1). 

Variable Value 
Molar Flowrate (mol/s) 5 

Temperature (K) 298.15 
Pressure (kPa) 980 

yCH4 0.281 
yCO 0.115 
yH2 0.604 

Table 6. Values of the parameters used for generating all the scenarios analyzed (243). The temperature and the 
molar flowrate were fixed at 298.15 K and 5 mol/s, respectively. Pressures and molar fractions are those of the inlet 
stream. 

Variable Values 
Pressure (kPa) 900 1480 2000 

Height of the bed (m) 0.5 1 2 
Bed diameter (m) 0.015 0.037 0.050 

(yCH4)inlet 0.25 0.30 0.35 
(yCO)inlet 0.08 0.11 0.14 
(yH2)inlet 1 − yCH4 − yCO 1 − yCH4 − yCO 1 − yCH4 − yCO 

By modifying the final time of the simulation, the number of data generated in each case was different. As 
mentioned above, data of the 243 scenarios were recorded each second of the simulation run, 80% of the 
breakthrough curves being used for ANNs training, whereas 20% of them being used for validation. Thus, for a 
value of this variable of 25 s, the number of data collected was 6318; for a value of 50 s, the number of data was 
12,393, for a value of 100 s, the number of data was 24,543; and for a value of 200 s, the number of data was 
48,843. 
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4. Discussion 

Figure 5 shows the breakthrough curve generated by Aspen AdsorptionTM for a time on stream of 600 s taken 
as a reference to the inlet conditions listed in Table 5. It can be seen that the steady state values for the molar 
fractions of CH4, CO and H2 in the effluent coming from the process were mostly attained at a time on stream 
lower than 200 s. Similar trends were observed for the rest of the runs. This time was considered the higher value 
for the analysis performed in this work. 

 

Figure 5. Evolution of the molar fractions of CH4, CO and H2 in the effluent for a time on stream of 600 s. The 
conditions of the inlet stream are listed in Table 2. Image taken from Aspen AdsortpionTM. 

First of all, it was checked that the procedure raised was able to work for a single breakthrough curve. As 
shown in Figure 6, it was found a model (7-RELU-4-SWISH-4-LINEAR-3) that fitted it well, demonstrating the 
capability of the procedure followed for predicting single breakthrough curves. Table 2 lists the five best ANN 
models that fitted the data obtained from the simulation performed by Aspen AdsorptionTM. Similar results were 
obtained when other single breakthrough curves were fitted. 

 

Figure 6. Breakthrough curve obtained with Aspen AdsorptionTM for CH4, CO and H2 and predicted results for a 
single breakthrough curve. Input variables: bed height, 1 m; bed diameter, 0.015 m; pressure, 2000 kPa; molar 
fractions of CH4, CO and H2, 0.35, 0.14, 0.51, respectively. 

Then, 80% of the breakthrough curves data for times on stream of 25, 50, 100, and 200 s were fitted to the 
608 ANN models selected in this work. Table 3 shows the best ANN models that fitted the data obtained with each 
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of the time on stream considered. Table S1 lists, as an example, the five best models for a time on stream of 100 
s. It can be observed that different best ANN models were selected as a function of the time on stream considered. 
In general, the determination coefficient is in some cases as high as those obtained for a single breakthrough curve. 
However, the values of this coefficient for the validation process for all the times on stream considered were lower. 
Figures 7–9 show for some runs used for validation the quality of prediction reached with the best models 
considered for each time on stream. As checked, the capacity of the ANN for predicting breakthrough curves is 
not as good as expected, although the trends followed by the prediction curves could be used to make a good 
estimation of the dynamic behaviour of the adsorption process. 

 

Figure 7. Breakthrough curves obtained with Aspen AdsorptionTM for CH4, CO and H2 and predicted results at 
times on stream of 25, 50, 100 and 200 s. Input variables: bed height, 1 m; bed diameter, 0.037 m; pressure, 900 
kPa; molar fractions of CH4, CO and H2, 0.30, 0.14, 0.56, respectively. This run was in the pack of runs used for 
validation. 

 

Figure 8. Breakthrough curves obtained with Aspen AdsorptionTM for CH4, CO and H2 and predicted results at 
times on stream of 25, 50, 100 and 200 s. Input variables: bed height, 1 m; bed diameter, 0.037 m; pressure, 2000 
kPa; molar fractions of CH4, CO and H2, 0.25, 0.14, 0.61, respectively. This run was in the pack of runs used for 
validation. 
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Figure 9. Breakthrough curves obtained with Aspen AdsorptionTM for CH4, CO and H2 and predicted results at 
times on stream of 25, 50, 100 and 200 s. Input variables: bed height, 1 m; bed diameter, 0.037 m; pressure, 1480 
kPa; molar fractions of CH4, CO and H2, 0.30, 0.14, 0.56, respectively. This run was in the pack of runs used for 
validation. 

On the other hand, Table 4 shows the relative importance of the independent variables (inputs) in each 
dependent variable (outputs) evaluated by the partial derivates method [60]. If the positive variation of an 
independent variable led to a positive variation of a dependent one the sign would be +; in the contrary case, it 
would be −. It can be observed that the relative importance of each dependent variable for all the sets of 
experiments considered was mainly a function of the time on stream and the pressure. It was also observed that 
the sign of some matches of independent and dependent variables was also a function of the set of time on stream 
considered. 

In summary, the results obtained in this study showed that although the ANN models can be used to predict 
the behaviour of breakthrough curves of multicomponent adsorption processes, the quality of the prediction was 
not as good as expected when the number of breakthrough curves considered was different from one. 

Finally, an ANN model was used to predict the breakthrough times corresponding to the reduction of the H2 
concentration in the outlet stream of 2% for all the scenarios raised. Again, 80% of the values obtained by 
simulation were used for training, whereas the remaining ones were used for validation. Table 7 shows the best 
ANN model, whereas Table 8 lists the relative importance of the independent variables (inputs) on the dependent 
variable (breakthrough time) evaluated by the partial derivates method. Again, the main input variable affecting 
the breakthrough time was the pressure, the sign being negative. Figure 10 shows a comparison between the values 
of the breakthrough times computed by Aspen AdsorptionTM and used for validation and those predicted by the 
best ANN model. As confirmed by the (r2)validation value, a good agreement between both sets of values was reached. 

Table 7. Best ANN model that fitted the breakthrough times. 

Model RMSE (r2)training ሺ𝝌𝟐ሻT (r2)validation 
7-POL-4-ELU-3-LINEAR-1 8.319 × 10−1 0.9998 1.457 × 102 0.9998 

Table 8. Relative importance in percentage for each set of times on stream data of the independent variables (inputs) 
on the dependent variable (breakthrough time) evaluated by the partial derivates method [60]. 

Inputs Output 
Breakthrough Time 

Height of the Bed (m) 0.37 (+) 
Bed Diameter (m) 0.00 (0) 

P (kPa) 99.58 (−) 
yCH4 0.00 (0) 
yCO 0.00 (0) 
yH2 0.00 (0) 
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Figure 10. Comparison between the values of the breakthrough times computed by Aspen AdsorptionTM and used 
for validation and those predicted by the best ANN model. 

The methodology here presented for the analysis of adsorption processes can be easily extrapolated to other 
separation or conversion processes and for the computation of thermodynamic properties. Two studies are 
currently running which take advantage of the experience here acquired: prediction of thermodynamical properties 
from COnductor-like Screening Model (COSMO) computations and evaluation of the sensitivity of 
characterization properties of catalysts on their catalytic performance. 

5. Conclusions 

This work analyzes the reliability of ANNs to predict a complex process. This way, breakthrough curves and 
breakthrough times of the multicomponent adsorption of H2, CO and CO2 in a fixed bed from a large set of runs 
(rather than a single run, which is the majority situation reported in the literature) generated through Aspen 
AdsorptionTM. As an example, a system constituted by a stream containing H2, CO and CO2 was considered. 
Thus, 243 different scenarios were generated with the software mentioned above. From them, it was selected sets 
of data depending on the ending time of the simulation: 25, 50, 100 and 200 s. The different sets were fitted to 600 
ANNs configurations through a homemade software running in Fortran. Eight additional algorithms contained in 
the Scikit-Learn, a Python module for machine learning, were also considered. To generate a consistent ANN, the 
data obtained through Aspen AdsorptionTM was randomly divided into two groups: (i) 80% of the breakthrough 
curves and breakthrough times, which were used for ANNs training, and (ii) 20% of them, which were used for 
validation. After checking that the procedure raised was able to work for a single breakthrough curve, it was 
observed that the capacity of the ANN for predicting a set of breakthrough curves was not so good as expected 
although the trends followed by the prediction curves could be used to make a good estimation of the dynamic 
behaviour of adsorption process. Finally, ANN models were used to predict the breakthrough times corresponding 
to the reduction of the H2 concentration in the outlet stream of 2% for all the scenarios raised. A good agreement 
was observed between the values of the breakthrough times computed by Aspen AdsorptionTM and used for 
validation and those predicted by the best ANN model. The general procedure followed here could be equally used 
for analyzing a real set of adsorption experiments or other different complex processes as described here. 
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