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Abstract: In this study, we explore the projective synchronization of quaternion-
valued competitive neural networks with multiple time scales (QVMTSCNNs), while
analyzing the impacts of discontinuous activation functions and time delays. To achieve
the control goal, two novel quaternion controllers are designed, which do not depend
on the ratio of the fast and slow time scales. By applying the nonsmooth analysis and
quaternion inequality techniques, two novel theorems for projective synchronization
of QVMTSCNNs are derived by non-separating methods. The obtained results in this
study are relatively simpler and straightforward, extending some previous findings.
Lastly, numerical analyses are executed to substantiate the theoretical conclusions.

Keywords: projective synchronization; quaternion; competitive neural networks;
multiple scales

1. Introduction

In recent decades, studies on real-valued neural networks (RVNNs) have made significant progress, while
complex-valued neural networks (CVNNs) have also produced valuable results in many fields [1–4]. However, they
have limitations in certain practical applications, especially in problems that involve handling high-dimensional
data. To address these issues, quaternion-valued neural networks (QVNNs) were introduced as an important
extension. QVNNs have shown great potential in areas such as wind speed forecasting, robot control, and aerospace
engineering [5–7]. Due to the unique structure of quaternions, the dynamic behaviour of QVNNs is more complex
than RVNNs and CVNNs. In the past, most studies on QVNNs have relied on decomposition methods [8–11], but
these often lead to more complex derivations and may increase the conservatism of the results. Therefore, it is
important to find a non-decomposition method with lower conservatism to study QVNNs.

Competitive Neural Networks (CNNs), an important category of neural networks, were first presented by
Cohen and Grossberg in 1983 [12]. In the CNNs, there exist two different categories of change states. Short-term
memory (STM) tracks rapid neural activity, while long-term memory (LTM) exhibits slow, unsupervised synaptic
shifts. As research on competitive neural networks (CNNs) has progressed steadily, numerous important findings
have emerged in the analysis of dynamic systems. Most researchers tend to focus on a single time scale when
studying the dynamics of CNNs [13–15], while overlooking the fact that multiple time scales are more widespread
during signal interactions among neural nodes. Therefore, the study of CNNs with multiple time scales can extend
many previous works, making it a more meaningful area of research.

Although the dynamic characteristics of QVNNs and CNNs have been widely studied, there are still very few
papers that combine the advantages of both. Existing research often focuses on their individual applications, such as
the role of QVNNs in multi-dimensional signal processing [16], or the performance of CNNs in competitive dynamic
models [17]. Few studies in the literature integrate both features, which limits the ability to deeply explore scenarios
where high-dimensional data and competitive dynamics are present together. Therefore, this study introduces
quaternion-valued competitive neural networks (QVCNNs), combining the strengths of both, and further expanding
the potential of neural network models.

Synchronization, a vital dynamic property of neural networks, appears commonly in nature and remains a key
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focus of research in recent years. In the 1990s, Pecora and Carroll were the first to investigate two chaotic systems
with different initial conditions, proposing a synchronization method for drive-response systems [18]. This marked
the beginning of a new era in the study of synchronization phenomena. Synchronization appears in diverse types,
including complete synchronization [19], projective synchronization [20], and exponential synchronization [21],
among others. Among them, projective synchronization is quite special because it can achieve various forms of
synchronization by adjusting the proportional factor. It has shown better performance in fields like computer vision
and medical imaging [22,23]. Furthermore, most previous studies treated the projective coefficient as real-valued.
Compared to real-valued projective coefficients, quaternion-valued projective coefficients can enhance the diversity
and complexity of synchronization, making the results more general.

When studying the synchronization of neural networks, we often encounter factors such as discontinuous
activation functions and time delays. Discontinuous activation functions are common in complex systems. Unlike
the smooth changes seen in traditional models, these functions can better reflect the dynamic behaviour of real
networks [24]. Time delays refer to the lag in the feedback or input signals within the system, which can make
the system’s behaviour more complex, especially when multiple time scales are involved, potentially leading to
phenomena like bifurcation and chaos [25]. Therefore, considering discontinuous activation functions and time
delays plays a vital role in improving the robustness and real-world utility of neural networks.

Building on the preceding analysis, this study explores the projective synchronization of QVMTSCNNs. The
primary contributions of this work are outlined below.

1. This research first incorporates multiple time scales into QVCNNs, which makes the dynamical behaviour
more complex. The previous results in [13,26] can be seen as a particular circumstance of this paper.

2. We establish two innovative and succinct conditions to achieve projective synchronization of QVMTSCNNs
using a non-separation approach. The results are represented by algebraic inequalities, which are easy to
be verified.

3. Novel controllers for synchronization are formulated, independent of the time scale ratio, and designed to
mitigate the ill-conditioned issue as the small parameter approaches zero.

Notations: R̂, Q̂, R̂n, and Q̂n represent real numbers, quaternion numbers, n-dimensional real vector spaces,
and n-dimensional quaternion vector spaces, respectively. Let Î = {1, 2, . . . , I} and Ŵ = {1, 2, . . . ,W}. Consider
Λ = ΛR + iΛI + jΛJ + kΛK ∈ Q̂, where ΛR,ΛI ,ΛJ ,ΛK ∈ R. Hamilton’s rules state that i2 = j2 = k2 = −1

and ij = k, jk = i, ki = j. Λ, Λ∗, ||Λ||1 =
∑

χ∈{R,I,J,K} |Λχ|, ||Λ||2 =
√
ΛΛ denote the conjugate, the

conjugate transpose, the 1-norm, and the 2-norm, respectively.

2. Preliminaries

Consider the QVCNNs model with multiple time scales as described below:

STM : ϵẋh(t) =− ahxh(t) +

I∑
s=1

bhsfs(xs(t)) + Eh

W∑
j=1

Υjzhj(t)

+

I∑
s=1

chsfs(xs(t− πs(t))),

LTM : żhj(t) =− dhzhj(t) + Υjfh(xh(t)), h, s ∈ Î , j ∈ Ŵ .

(1)

where xh(t) ∈ Q̂ denotes the state variable of the hth neuron, zhj(t) ∈ Q̂ refers to the neuron’s synaptic strength,
ah > 0 represents the self-regulation constant. The parameters bhs, chs ∈ Q̂ indicate the connection weights, fs(·)
is a discontinuous activation function. Υj is the external input, dh, Eh ∈ R̂+ denote constants, ε indicates the time
scale factor, the time delay πs(t) is such that 0 ≤ πs(t) ≤ π̂.

Define Ph(t) =
∑W

j=1 Υjzhj(t) and Υ = (Υ1,Υ2, . . . ,ΥW )T , where Υ is normalized, i.e., ||Υ||22 = 1. So,
system (1) can be described by:

STM : ϵẋh(t) =− ahxh(t) +

I∑
s=1

bhsfs(xs(t)) + EhPh(t)

+

I∑
s=1

chsfs(xs(t− πs(t))),

LTM : Ṗh(t) =− dhPh(t) + fh(xh(t)), h ∈ Î .

(2)
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The initial conditions are listed below:

xh(τ) = Ah(τ), Ph(τ) = Bh(τ), τ ∈ [−π̂, 0], h ∈ Î ,

where Ah(τ), Bh(τ) are continuous on [−π̂, 0].

The slave system for Formula (2) is presented:

STM : ϵẏh(t) =− ahyh(t) +

I∑
s=1

bhsfs(ys(t)) + EhQh(t)

+

I∑
s=1

chsfs(ys(t− πs(t))) + uh(t),

LTM : Q̇h(t) =− dhQh(t) + fh(yh(t)) + vh(t), h ∈ Î .

(3)

In which uh(t), vh(t) denote the controllers, yh(t), Qh(t) are the response states of the hth neuron.
The initial conditions are stated as:

yh(τ) = Ãh(τ), Qh(τ) = B̃h(τ), τ ∈ [−π̂, 0], h ∈ Î ,

where Ãh(τ), B̃h(τ) are continuous on [−π̂, 0].

The assumptions are as follows:

Assumption 1. [15] For each p ∈ Î , the function fp(xp) can be expressed as:

fp(xp) = fR
p (xp) + if I

p (xp) + jfJ
p (xp) + kfK

p (xp),

which is continuous except at a countable number of isolated points θlp, where the limits f−
p (θlp) and f+

p (θlp) exist.
Furthermore, the number of jump discontinuities of fp(xp) within any bounded compact subset of Q̂ is always finite.

Assumption 2. For each k ∈ Î , there are Lk > 0 and Hk > 0 such that:

||Yk −Xk||l ≤ Lk||yk − xk||l +Hk, and ||fk(xk)||l ≤ Mk, l = 1, 2,

holds for xk, yk ∈ Q̂, Xk ∈ co[fk(xk)], Yk ∈ co[fk(yk)]. Here, co[f(·)] = [f̌(·), f̂(·)], where f̌(·) and f̂(·) denote
the minimum and maximum between f+(·) and f−(·), respectively.

For convenience, we provide the following definition:

Definition 1. [4] A vector function F (t) : [−π̂, T0) −→ Q̂2I , is defined as:

F (t) = (x1(t), x2(t), . . . , xI(t), P1(t), P2(t), . . . , PI(t))
T ,

F̃ (t) = (A1(t), A2(t), . . . , AI(t), B1(t), B2(t), . . . , BI(t))
T ,

where T0 ∈ (0,+∞), is defined as a Filippov solution to system (2) on the interval [−π̂, T0), if it meets these criteria:

(1) F (t) exhibits absolute continuity in [0, T0);
(2) For the measurable function X(t) = (X1(t), X2(t), . . . , XI(t))

T in [0, T0), satisfying Xs ∈ co[fs(xs(t))],

then: 

STM : ϵẋh(t) =− ahxh(t) +

I∑
s=1

bhsXs(t) + EhPh(t)

+

I∑
s=1

chsXs(t− πs(t)),

LTM : Ṗh(t) =− dhPh(t) +Xh(t), h ∈ Î ,

(4)

at almost every point t in [0, T0) (a.e.).
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Comparable to system (2), there exists Ys(t) ∈ co[fs(ys(t))], we have:

STM : ϵẏh(t) =− ahyh(t) +

I∑
s=1

bhsYs(t) + EhQh(t)

+

I∑
s=1

chsYs(t− πs(t)) + uh(t),

LTM : Q̇h(t) =− dhQh(t) + Yh(t) + vh(t), h ∈ Î ,

(5)

at almost every point t in [0, T0) (a.e.).
Let eh(t) = yh(t) − α̂hxh(t), σh(t) = Qh(t) − α̂hPh(t), where α̂h ∈ Q̂, h ∈ Î , denotes the projective

synchronization error.
Thus, the error system for Formulas (4) and (5) is:

STM : ϵėh(t) =− aheh(t) +

I∑
s=1

bhs(Ys(t)− α̂hXs(t))

+

I∑
s=1

chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))

+ Ehσh(t) + uh(t),

LTM : σ̇h(t) =− dhσh(t) + Yh(t)− α̂hXh(t) + vh(t), h ∈ Î .

(6)

Definition 2. Assume there are α̂h ∈ Q̂ that satisfies:

lim
τ→+∞

||yh(τ)− α̂hxh(τ)||o = 0, lim
τ→+∞

||Qh(τ)− α̂hPh(τ)||o = 0, o = 1, 2,

the systems (4) and (5) achieve asymptotic projective synchronization with the coefficient α̂h.

Remark 1. When investigating projective synchronization, most studies have focused on projective coefficients
within the real and complex domains [27–29]. In contrast, this paper considers projective coefficients in the
quaternion domain, making the obtained results more general.

Definition 3. For any θ = θR + iθI + jθJ + kθK ∈ Q̂, the sign function of θ is given by:

sgn(θ) = sgn(θR) + isgn(θI) + jsgn(θJ) + ksgn(θK).

Lemma 1. [30] For each h ∈ Î , if xh ≥ 0, and 0 ≤ p ≤ 1, then
∑I

h=1 x
p
h ≥ (

∑I
h=1 xh)

p.

Lemma 2. [31] Assume X ∈ Q̂n and Y ∈ Q̂n, the following inequalities and identities hold:

(1)X∗sgn(Y) + sgn∗(Y)X

≤ X∗sgn(X) + sgn∗(X)X = 2||X||1,
(2)D+(X∗sgn(X) + sgn∗(X)X)

= sgn∗(X)Ẋ +X∗sgn(Ẋ), ||X||1 ̸= 0,

(3)||XY||l ≤ ||X||l||Y||l, l = 1, 2,

(4)sgn∗(X)sgn(X) = ||sgn(X)||1,
(5)X∗Y+Y∗X ≤ X∗X +Y∗Y,

(6)X∗X = ||X||22.

Lemma 3. [32] Consider V (τ) as a continuous positive-definite function that satisfies:

V̇ (τ) ≤ −ζV (τ)ρ, ∀τ ≥ 0, V (0) ≥ 0,

where ζ > 0, 0 < ρ < 1. Then, V (τ) approaches zero within a finite settling time T ≤ V (0)1−ρ

ζ(1−ρ) , and V (τ) ≡ 0,
∀τ ≥ T.
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3. Main Results

In this part, we develop two controllers and set rules to ensure that the systems (4) and (5) can achieve both
asymptotic and finite-time projective synchronization.

3.1. Asymptotic Projective Synchronization of QVMTSCNNs

For the purpose of attaining asymptotic projective synchronization, the subsequent controllers are developed:
uh(t) =− λheh(t)− µh

eh(t)

||eh(t)||2

vh(t) =− δhσh(t)− βh
σh(t)

||σh(t)||2
,

(7)

where λh, µh, δh, βh > 0, and h ∈ Î .

Theorem 1. Based on Assumptions 1–2, the master-slave system (4) and (5) can achieve asymptotic projective
synchronization with controller (7), if there exist scalars Ah, Bh, Ch and Dh such that:

Ah < 0, Bh < 0, Ch < 0, Dh < 0, (8)

where

Ah = −2ah + Eh + Lh − 2λh +

I∑
s=1

(Ls||bhs||2 + Lh||bhs||2) ,

Bh = −2µh + 2

I∑
s=1

(Hs +Ms(1 + ||α̂h||2)) · ||bhs||2

+ 2

I∑
s=1

Ms(1 + ||α̂h||2) · ||chs||2,

Ch = −2dh + Lh + Eh − 2δh,

Dh = 2Hh +Mh(1 + ||α̂h||2)− βh, h ∈ Î .

Proof. Select the Lyapunov functional:
V (t) = V1(t) + V2(t)

V1(t) = ϵ

I∑
h=1

e∗h(t)eh(t), V2(t) =

I∑
h=1

σ∗
h(t)σh(t). (9)

First, consider V1(t)

D+V1(t) =

I∑
h=1

ϵė∗h(t)eh(t) + ϵe∗h(t)ėh(t)

=

I∑
h=1

[
− aheh(t) +

I∑
s=1

bhs(Ys(t)− α̂hXs(t)) + Ehσh(t)

+

I∑
s=1

chs(Ys(t− πs(t))− α̂hXs(t− πs(t))) + uh(t)
]∗
eh(t)

+

I∑
h=1

e∗h(t)
[
− aheh(t) +

I∑
s=1

bhs(Ys(t)− α̂hXs(t))

+

I∑
s=1

chs(Ys(t− πs(t))− α̂hXs(t− πs(t))) + Ehσh(t) + uh(t)
]

=− 2

I∑
h=1

ahe
∗
h(t)eh(t) +

I∑
h=1

[u∗
h(t)eh(t) + e∗h(t)uh(t)]
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+

I∑
h=1

I∑
s=1

(Ys(t)− α̂hXs(t))
∗b∗hseh(t) + e∗h(t)bhs(Ys(t)− α̂hXs(t))

+

I∑
h=1

I∑
s=1

(Ys(t− πs(t))− α̂hXs(t− πs(t)))
∗c∗hseh(t)

+ e∗h(t)chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))

+

I∑
h=1

Eh [σ
∗
h(t)eh(t) + e∗h(t)σh(t)] .

By Lemma 2, one gets

−2

I∑
h=1

ahe
∗
h(t)eh(t) = −2

I∑
h=1

ah||eh(t)||22. (10)

With reference to Assumptions 1–2 and Lemma 2, we obtain

I∑
h=1

I∑
s=1

(Ys(t)− α̂hXs(t))
∗b∗hseh(t) + e∗h(t)bhs(Ys(t)− α̂hXs(t))

=

I∑
h=1

I∑
s=1

[
fs(ys(t)− fs(α̂hxs(t)) + fs(α̂hxs(t))− α̂hfs(xs(t))

]∗
b∗hseh(t)

+ e∗h(t)bhs
[
fs(ys(t)− fs(α̂hxs(t)) + fs(α̂hxs(t))− α̂h(fs(xs(t))

]
≤2

I∑
h=1

I∑
s=1

||[fs(ys(t))− fs(α̂hxs(t)) + fs(α̂hxs(t))− α̂hfs(xs(t))]bhs||2 · ||eh(t)||2

≤2

I∑
h=1

I∑
s=1

||fs(ys(t))− fs(α̂hxs(t))||2 · ||bhs||2 · ||eh(t)||2

+ ||fs(α̂hxs(t))− α̂hfs(xs(t))||2 · ||bhs||2 · ||eh(t)||2

≤2

I∑
h=1

I∑
s=1

(Ls||es(t)||2 +Hs) · ||bhs||2 · ||eh(t)||2

+Ms(1 + ||α̂h||2) · ||bhs||2 · ||eh(t)||2

≤2

I∑
h=1

I∑
s=1

1

2
· Ls

(
||es(t)||22 + ||eh(t)||22

)
· ||bhs||2

+ (Hs +Ms(1 + ||α̂h||2)) · ||bhs||2 · ||eh(t)||2

=

I∑
h=1

I∑
s=1

Lh · ||bhs||2 · ||eh(t)||22 +
I∑

h=1

I∑
s=1

Ls · ||bhs||2 · ||eh(t)||22

+ 2

I∑
h=1

I∑
s=1

(Hs +Ms(1 + ||α̂h||2)) · ||bhs||2 · ||eh(t)||2, (11)

similarly

I∑
h=1

I∑
s=1

(Ys(t− πs(t))− α̂hXs(t− πs(t)))
∗c∗hseh(t)

+ e∗h(t)chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))

≤2

I∑
h=1

I∑
s=1

||fs(ys(t− πs(t)))− α̂hfs(xs(t− πs(t)))||2 · ||chs||2 · ||eh(t)||2

≤2

I∑
h=1

I∑
s=1

Ms(1 + ||α̂h||2) · ||chs||2 · ||eh(t)||2, (12)
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and
I∑

h=1

Eh[σ
∗
h(t)eh(t) + e∗h(t)σh(t)] ≤

I∑
h=1

Eh

(
||eh(t)||22 + ||σh(t)||22

)
, (13)

and

I∑
h=1

u∗
h(t)eh(t) + e∗h(t)uh(t)

=

I∑
h=1

(
− λheh(t)− µh

eh(t)

||eh(t)||2
)∗
eh(t) + e∗h(t)

(
− λheh(t)− µh

eh(t)

||eh(t)||2
)

=− 2

I∑
h=1

(
λh||eh(t)||22 + µh||eh(t)||2

)
. (14)

Moreover, for V2(t):

D+V2(t) =

I∑
h=1

σ̇∗
h(t)σh(t) + σ∗

h(t)σ̇h(t)

=

I∑
h=1

(−dhσh(t) + Yh(t)− α̂hXh(t) + vh(t))
∗σh(t)

+ σ∗
h(t)(−dhσh(t) + Yh(t)− α̂hXh(t) + vh(t))

=− 2

I∑
h=1

dhσ
∗
h(t)σh(t) +

I∑
h=1

v∗h(t)σh(t) + σ∗
h(t)vh(t)

+

I∑
h=1

(Yh(t)− α̂hXh(t))
∗σh(t) + σ∗

h(t)(Yh(t)− α̂hXh(t)),

similarly

−2

I∑
h=1

dhσ
∗
h(t)σh(t) = −2

I∑
h=1

dh||σh(t)||22, (15)

and

I∑
h=1

(Yh(t)− α̂hXh(t))
∗σh(t) + σ∗

h(t)(Yh(t)− α̂hXh(t))

≤2

I∑
h=1

||(Yh(t)− α̂hXh(t))||2 · ||σh(t)||2

≤2

I∑
h=1

(Lh · ||eh(t)||2 +Hh +Mh(1 + ||α̂h||2)) · ||σh(t)||2

=2

I∑
h=1

Lh · ||eh(t)||2 · ||σh(t)||2 + (Hh +Mh(1 + ||α̂h||2)) · ||σh(t)||2

≤
I∑

h=1

Lh(||eh(t)||22 + ||σh(t)||22) + 2

I∑
h=1

(Hh +Mh(1 + ||α̂h||2)) · ||σh(t)||2, (16)

and

I∑
h=1

v∗h(t)σh(t) + σ∗
h(t)vh(t)

=

I∑
h=1

(
− δhσh(t)− βh

σh(t)

||σh(t)||2
)∗
σh(t) + σ∗

h(t)
(
− δhσh(t)− βh

σh(t)

||σh(t)||2
)
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=− 2

I∑
h=1

(δh||σh(t)||22 + βh||σh(t)||2). (17)

Combining the above Formulas (10)–(17), we obtain:

D+V (t) ≤− 2

I∑
h=1

ah||eh(t)||22 − 2

I∑
h=1

(δh||σh(t)||22 + βh||σh(t)||2)

+

I∑
h=1

I∑
s=1

Ls · ||bhs||2 · ||eh(t)||22 +
I∑

h=1

I∑
s=1

Lh · ||bhs||2 · ||eh(t)||22

+ 2

I∑
h=1

I∑
s=1

(Hs +Ms(1 + ||α̂h||2)) · ||bhs||2 · ||eh(t)||2

+ 2

I∑
h=1

I∑
s=1

Ms(1 + ||α̂h||2) · ||chs||2 · ||eh(t)||2 − 2

I∑
h=1

dh||σh(t)||22

+

I∑
h=1

Eh(||eh(t)||22 + ||σh(t)||22)− 2

I∑
h=1

(λh||eh(t)||22 + µh||eh(t)||2)

+

I∑
h=1

Lh(||eh(t)||22 + ||σh(t)||22)

+ 2

I∑
h=1

(Hh +Mh(1 + ||α̂h||2)) · ||σh(t)||2

=

I∑
h=1

Ah||eh(t)||22 +
I∑

h=1

Bh||eh(t)||2

+

I∑
h=1

Ch||σh(t)||22 +
I∑

h=1

Dh||σh(t)||2.

Let 0 < G ≤ min{−Ah

ϵ
,−Ch}, then, according to inequalities Formula (8). We have:

D+V (t) ≤
I∑

h=1

Ah||eh(t)||22 +
I∑

h=1

Ch||σh(t)||22 ≤ −GV (t). (18)

By integrating both sides of Equation (18) and considering the limit as t → +∞, we obtain the following result:

lim
t→+∞

V (t) ≤ lim
t→+∞

C ′e−Gt = 0, C ′ ∈ R̃. (19)

Combining the aforementioned discussions, then:

lim
t→+∞

||yh(t)− α̂hxh(t)||2 = 0, lim
t→+∞

||Sh(t)− α̂hRh(t)||2 = 0. (20)

By Definition 2, the master-slave systems (4) and (5) achieve asymptotic projective synchronization. The
proof is finished. □

Remark 2. Notably, choosing different projective coefficients α̂h results in varying synchronization forms between
Formulas (4) and (5). Specifically, when α̂h = 1, projective synchronization becomes identical to complete
synchronization. Conversely, when α̂h = −1, it transforms into anti-synchronization.

Remark 3. When discussing the dynamical properties of QVNNs, many papers employ decomposition
techniques [3,33,34], which generally involve more complex derivations. However, in this paper, we fully utilize the
properties of quaternions and use a non-decomposition approach, thereby reducing conservatism.

Remark 4. Unlike the Lyapunov function constructed in [13], we construct an ϵ-dependent composite Lyapunov
function based on time scales, which significantly reduces the computational load associated with differentiation.
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3.2. Finite-Time Projective Synchronization of QVMTSCNNs

To realize finite-time projective synchronization, the following controllers are developed:{
uh(t) =− ηheh(t)−Θhsgn(eh(t))− γhsgn(eh(t))||eh(t)||ρ1
vh(t) =− κhσh(t)− Ωhsgn(σh(t))− ιhsgn(σh(t))||σh(t)||ρ1,

(21)

where ηh, γh, κh, ιh,Θh,Ωh > 0, 0 < ρ < 1, and h ∈ Î .

Theorem 2. Given Assumptions 1–2, the system described by systems (4) and (5) can attain finite-time projective
synchronization using the controller (21), provided the following inequalities hold:

I∑
h=1

I∑
s=1

[(Hs +Ms(1 + ||α̂h||1)) · ||bhs||1 +Ms(1 + ||α̂h||1) · ||chs||1]

+

I∑
h=1

[Hh +Mh(1 + ||α̂h||1)] ≤
I∑

h=1

(Θh +Ωh),

− ah +

I∑
s=1

Lh · ||bhs||1 + Lh ≤ ηh, Eh − dh ≤ κh, h ∈ Î . (22)

One can estimate the setting time by :

T1 ≤

(∑I
h=1 ϵ||eh(0)||1 +

∑I
h=1 ||σh(0)||1

)1−ρ

F (1− ρ)
,

where 0 < F ≤ min{γi
ϵ
, ιi}.

Proof. Consider the following Lyapunov functional:

V (t) = V1(t) + V2(t)


V1(t) =

ϵ

2

I∑
h=1

(sgn∗(eh(t))eh(t) + e∗h(t)sgn(eh(t)))

V2(t) =
1

2

I∑
h=1

(sgn∗(σh(t))σh(t) + σ∗
h(t)sgn(σh(t)))

(23)

First, consider V1(t):

D+V1(t) =
ϵ

2

I∑
h=1

(sgn∗(eh(t))ėh(t) + ė∗h(t)sgn(eh(t)))

=
1

2

I∑
h=1

sgn∗(eh(t))
[
− aheh(t) +

I∑
s=1

bhs(Ys(t)− α̂hXs(t))

+

I∑
s=1

chs(Ys(t− πs(t))− α̂hXs(t− πs(t))) + Ehσh(t) + uh(t)
]

+
1

2

I∑
h=1

[
− aheh(t) +

I∑
s=1

chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))

+

I∑
s=1

bhs(Ys(t)− α̂hXs(t)) + Ehσh(t) + uh(t)
]∗
sgn(eh(t))

=

I∑
h=1

−ah
2
[sgn∗(eh(t))eh(t) + e∗h(t)sgn(eh(t))]
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+
1

2

I∑
h=1

I∑
s=1

[sgn∗(eh(t))bhs(Ys(t)− α̂hXs(t))

+ (Ys(t)− α̂hXs(t))
∗b∗hssgn(eh(t))]

+
1

2

I∑
h=1

I∑
s=1

[sgn∗(eh(t))chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))

+ (Ys(t− πs(t))− α̂hXs(t− πs(t)))
∗c∗hssgn(eh(t))]

+
1

2

I∑
h=1

Eh

[
sgn∗(eh(t))σh(t) + σ∗

h(t)sgn(eh(t)))
]

+
1

2

I∑
h=1

sgn∗(eh(t))uh(t) + u∗
h(t)sgn(eh(t)).

By Lemma 2, one has

I∑
h=1

−ah
2
[sgn∗(eh(t))eh(t) + e∗h(t)sgn(eh(t))] = −

I∑
h=1

ah||eh(t)||1. (24)

The subsequent proof follows the same method as Theorem 1, and thus the calculation process is simplified

1

2

I∑
h=1

I∑
s=1

[
sgn∗(eh(t))bhs(Ys(t)− α̂hXs(t)) + (Ys(t)− α̂hXs(t))

∗b∗hssgn(eh(t)
]

≤
I∑

h=1

I∑
s=1

[
||fs(ys(t)− fs(α̂hxs(t))||1 + ||fs(α̂xs(t))− α̂hfs(xs(t))||1

]
· ||bhs||1

≤
I∑

h=1

I∑
s=1

[
(Ls||es(t)||1 +Hs) +Ms(1 + ||α̂h||1)

]
· ||bhs||1

=

I∑
h=1

I∑
s=1

Lh · ||bhs||1 · ||eh(t)||1 +
I∑

h=1

I∑
s=1

(Hs +Ms(1 + ||α̂h||1)) · ||bhs||1, (25)

similarly

1

2

I∑
h=1

I∑
s=1

[sgn∗(eh(t))chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))

+ (Ys(t− πs(t))− α̂hXs(t− πs(t)))
∗c∗hssgn(eh(t))]

≤
I∑

h=1

I∑
s=1

||chs(Ys(t− πs(t))− α̂hXs(t− πs(t)))||1

≤
I∑

h=1

I∑
s=1

Ms(1 + ||α̂h||1) · ||chs||1, (26)

and

1

2

I∑
h=1

Eh[sgn
∗(eh(t))σh(t) + σ∗

h(t)sgn(eh(t)))] ≤
I∑

h=1

Eh||σh(t)||1, (27)

and

1

2

I∑
h=1

sgn∗(eh(t))uh(t) + u∗
h(t)sgn(eh(t))

=
1

2

I∑
h=1

sgn∗(eh(t))(−ηheh(t)−Θhsgn(eh(t))− γhsgn(eh(t))||eh(t)||ρ1)
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+ (−ηheh(t)−Θhsgn(eh(t))− γhsgn(eh(t))||eh(t)||ρ1)∗sgn(eh(t))

≤
I∑

h=1

[−ηh||eh(t)||1 − γh||sgn(eh(t))||1||eh(t)||ρ1]−
I∑

h=1

Θh. (28)

Moreover, for V2(t):

D+V2(t) =
1

2

I∑
h=1

[sgn∗(σh(t))σ̇h(t) + σ̇∗
h(t)sgn(σh(t))]

=
1

2

I∑
h=1

sgn∗(σh(t))(−dhσh(t) + Yh(t)− α̂hXh(t) + vh(t))

+ (−dhσh(t) + Yh(t)− α̂hXh(t) + vh(t))
∗sgn(σh(t))

=− 1

2

I∑
h=1

dh [sgn
∗(σh(t))σh(t) + σ∗

h(t)sgn(σh(t))]

+
1

2

I∑
h=1

[sgn∗(σh(t))(Yh(t)− α̂hXh(t))

+ (Yh(t)− α̂hXh(t))
∗sgn(σh(t))]

+
1

2

I∑
h=1

sgn∗(σh(t))vh(t) + v∗h(t)sgn(σh(t)),

similarly

−1

2

I∑
h=1

dh[sgn
∗(σh(t))σh(t) + σ∗

h(t)sgn(σh(t))] = −
I∑

h=1

dh||σh(t)||1, (29)

and

I∑
h=1

1

2
[sgn∗(σh(t))(Yh(t)− α̂hXh(t)) + (Yh(t)− α̂hXh(t))

∗sgn(σh(t))]

≤
I∑

h=1

||Yh(t)− α̂hXh(t)||1 ≤
I∑

h=1

[(Lh||eh(t)||1 +Hh) +Mh(1 + ||α̂h||1)], (30)

and

1

2

I∑
h=1

sgn∗(σh(t))vh(t) + v∗h(t)sgn(σh(t))

=
1

2

I∑
h=1

sgn∗(σh(t))(−κhσh(t)− Ωhsgn(σh(t))− ιhsgn(σh(t))||σh(t)||ρ1)

+ (−κhσh(t)− Ωhsgn(σh(t))− ιhsgn(σh(t))||σh(t)||ρ1)∗sgn(σh(t))

≤
I∑

h=1

[−κh||σh(t)||1 − ιh||sgn(σh(t))||1||σh(t)||ρ1]−
I∑

h=1

Ωh. (31)

By organizing the above Formulas (24)–(31) and inequalities (22), then:

D+V (t) ≤−
I∑

h=1

ah||eh(t)||1 +
I∑

h=1

I∑
s=1

Lh · ||bhs||1 · ||eh(t)||1 −
I∑

h=1

ηh||eh(t)||1

+

I∑
h=1

I∑
s=1

(Hs +Ms(1 + ||α̂h||1)) · ||bhs||1 −
I∑

h=1

κh||σh(t)||1

+

I∑
h=1

I∑
s=1

Ms(1 + ||α̂h||1) · ||chs||1 −
I∑

h=1

ιh||sgn(σh(t))||1||σh(t)||ρ1
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−
I∑

h=1

γh||sgn(eh(t))||1||eh(t)||ρ1 −
I∑

h=1

dh||σh(t)||1 +
I∑

h=1

Eh||σh(t)||1

+

I∑
h=1

[(Lh||eh(t)||1 +Hh) +Mh(1 + ||α̂h||1)]−
I∑

h=1

Θh −
I∑

h=1

Ωh

≤− γh

I∑
h=1

||sgn(eh(t))||1||eh(t)||ρ1 − ιh

I∑
h=1

||sgn(σh(t))||1||σh(t)||ρ1.

According to lemma 1, and ||sgn(eh(t))||1=0 or 1, ||sgn(σh(t))||1=0 or 1. let 0 < F ≤ min{γh
ϵ
, ιh}, then:

D+V (t) ≤− F (

I∑
h=1

ϵ||eh(t)||ρ1 +
I∑

h=1

||σh(t)||ρ1)

≤− F (

I∑
h=1

ϵ||eh(t)||1 +
I∑

h=1

||σh(t)||1)ρ = −FV (t)ρ.

Using Lemma 3, the master-slave systems (4) and (5) can achieve finite-time projective synchronization, with
the settling time estimated by:

T1 ≤ V (0)1−ρ

F (1− ρ)
=

(∑I
h=1 ϵ||eh(0)||1 +

∑I
h=1 ||σh(0)||1

)1−ρ

F (1− ρ)
.

We have completed the proof. □

Remark 5. The synchronization of CNNs has been explored in [14,35], yet these studies overlooked the impact of
time delay. Since time delay is an inherent characteristic of neural networks, affecting their oscillatory behaviour,
its consideration is essential.

4. Numerical Simulation

This section demonstrates the validity of Theorems 1–2 through two examples.
Consider the QVMTSCNNs model:

STM : ϵẋh(t) =− ahxh(t) +

2∑
s=1

bhsfs(xs(t)) + EhPh(t)

+

2∑
s=1

chsfs(xs(t− πs(t))),

LTM : Ṗh(t) =− dhPh(t) + fh(xh(t)), h = 1, 2.

(32)

where ϵ = 0.2, a1 = a2 = 3, d1 = d2 = 2.8, E1 = 1.2, E2 = 1, and πs(t) = 0.8 sin(t) + 1.0, fs(θ) =

0.1[(sin(θR)+0.01sign(θR))+i(sin(θI)+0.01sign(θI))+j(sin(θJ)+0.01sign(θJ))+k(sin(θK)+0.01sign(θK))].

(bij)2×2 =

(
0.61 + 1.02i − 0.53j + 0.32k 0.94− 0.71i + 0.25j − 0.63k

0.10 + 0.75i − 1.02j − 0.88k 1.43− 0.22i − 0.51j + 0.39k

)
,

and

(cij)2×2 =

(
0.22 + 0.21i − 0.14j − 1.09k 0.74− 1.25i + 0.75j − 0.20k

1.15− 1.28i − 0.26j + 0.60k 1.92 + 0.41i − 1.83j + 0.79k

)
.

The slave system is defined as:

STM : ϵẏh(t) =− ahyh(t) +

2∑
s=1

bhsfs(ys(t)) + EhQh(t)

+

2∑
s=1

chsfs(ys(t− πs(t))) + uh(t),

LTM : Q̇h(t) =− dhQh(t) + fh(yh(t)) + vh(t), h = 1, 2,

(33)
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the variables of system (33) are the same as those of system (32).
First, we show the asymptotic projective synchronization of the master-slave systems (32) and (33) using the

controllers given below: 
uh(t) =− λheh(t)− µh

eh(t)

||eh(t)||2

vh(t) =− δhσh(t)− βh
σh(t)

||σh(t)||2
, h = 1, 2.

(34)

It is easy to compute that L1 = L2 = 0.1, H1 = H2 = 0.02, and M1 = M2 = 0.404. The projective
coefficients are chosen α̂1 = 0.5− 1.1i + 0.1j − 1.0k, α̂2 = 1.4 + 0.3i + 0.7j − 0.3k.

Taking the control parameters λ1 = λ2 = 0.6, µ1 = µ2 = 7, δ1 = δ2 = 1.4, β1 = β2 = 1.2. Then, all the
requirements of Theorem 1 are met. Randomly select 6 sets of initial values. The systems (32) and (33) can achieve
asymptotic projective synchronization with controller (34), which is shown in Figures 1 and 2.

Secondly, we show the finite-time projective synchronization of the master-slave systems (32) and (33) using
the following controllers:{

uh(t) =− ηheh(t)−Θhsgn(eh(t))− γhsgn(eh(t))||eh(t)||ρ1
vh(t) =− κhσh(t)− Ωhsgn(σh(t))− ιhsgn(σh(t))||σh(t)||ρ1, h = 1, 2.

(35)

Select F = 0.5, η1 = η2 = 5, κ1 = κ2 = 2.5, γ1 = γ2 = 0.4, ι1 = ι2 = 0.6,Θ1 = Θ2 = 8,Ω1 = Ω2 =

4, ρ = 0.7. Then, all criteria in Theorem 2 are satisfied. Randomly select 6 sets of initial values. Therefore,
the systems (32) and (33) achieve finite-time projective synchronization with controller (35), as illustrated in
Figures 3 and 4. The settling time is calculated as T1 = 7.6s.

Figure 1. States of er(t), ei(t), ej(t), and ek(t) of Systems (32) and (33) with controller (34).
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Figure 2. States of σr(t), σi(t), σj(t), and σk(t) of Systems (32) and (33) with controller (34).

Figure 3. States of er(t), ei(t), ej(t), and ek(t) of Systems (32) and (33) with controller (35).
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Figure 4. States of σr(t), σi(t), σj(t), and σk(t) of Systems (32) and (33) with controller (35).

5. Conclusions

This paper establishes a quaternion-valued competitive neural network model under multiple time scales
(QVMTSCNNs) and investigates its asymptotic and finite-time projective synchronization problems. The results
are validated through two numerical simulations. Future research will focus on exploring additional types of
synchronization in QVMTSCNNs.
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22. Petković, T.; Pribanić, T.; Ðonlić, M.; et al. Software synchronization of projector and camera for structured light 3d body

scanning. In Proceedings of the 7th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland,
30 November–1 December 2016.

23. Gupta, H.; Jin, K.H.; Nguyen, H.Q.; et al. Cnn-based projected gradient descent for consistent ct image reconstruction.
IEEE Trans. Med. Imaging 2018, 37, 1440–1453.

24. Liu, Y.; Wang, Z.; Ma, Q.; et al. Multistability analysis of delayed recurrent neural networks with a class of piecewise
nonlinear activation functions. Neural Netw. 2022, 152, 80–89.

25. Ghosh, D. Time scale synchronization between two different time-delayed systems. Electron. J. Theor. Phys. 2009, 6,
125–138.
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