Downloads

Kimura, R., Hayashi, Y., Sato-Fujimoto, Y., Miyakawa, K., Shirato, K., Nagasawa, K., Mizukoshi, F., Tsugawa, T., Ryo, A., & Kimura, H. Reinfection Mechanisms of Various Viruses and Their Societal Implications. Disease Biology, Genetics, and Socioecology. 2025, 1(1), 4. doi: https://doi.org/10.53941/dbgs.2025.100004

Review

Reinfection Mechanisms of Various Viruses and Their Societal Implications

Ryusuke Kimura 1,2,, Yuriko Hayashi 3,, Yuka Sato-Fujimoto 4, Kei Miyakawa 5, Kazuya Shirato 6, Koo Nagasawa 7, Fuminori Mizukoshi 6, Takeshi Tsugawa 8, Akihide Ryo 4 and Hirokazu Kimura 2,3,*

1 Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan

2 Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan

3 Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan

4 Faculty of Healthcare, Tokyo Healthcare University, Setagaya-ku 141-8648, Tokyo, Japan

5 Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama-shi 208-011, Tokyo, Japan

6 Department of Virology III, Infectious Disease Surveillance Center, National Institute of Infectious Diseases,
Musashimurayama-shi 208-0011, Tokyo, Japan

7 Department of Pediatrics, Chiba University Hospital, Chiba-shi 260-8670, Chiba, Japan

8 Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo-shi 060-8543, Hokkaido, Japan

* Correspondence: h-kimura@paz.ac.jp

† These authors contributed equally to this work.

Received: 27 December 2024; Revised: 22 January 2025; Accepted: 24 February 2025; Published: 26 February 2025

Abstract: Viral infections involve numerous pathogens, some of which allow reinfection while others, such as measles virus, provide lifelong immunity. The differences in reinfection mechanisms can be attributed to variations in viral antigenicity and host immune responses. Measles virus exhibits highly conserved hemagglutinin (HA) proteins, where neutralizing antibody-binding regions overlap with host receptor-binding sites, resulting in effective immune protection against reinfection. In contrast, influenza viruses undergo rapid antigenic evolution driven by immune selection pressures, leading to immune escape variants that facilitate annual reinfections. SARS-CoV-2, similarly, shows frequent mutations in its spike protein receptor-binding domain (RBD), contributing to reinfection despite prior immunity from vaccination or infection. Respiratory syncytial virus (RSV) and human respirovirus type 3 (HRV3) are monoserotype viruses capable of lifelong reinfections. Structural analyses indicate that their conformational epitopes do not align with neutralizing antibody-binding sites, undermining the effectiveness of immune responses. To better understand these mechanisms highlights the interplay between viral evolution and host defenses, providing essential insights for developing targeted vaccines and therapeutic strategies to combat respiratory virus reinfections. Moreover, understanding of the reinfection mechanisms regarding various virus infections may significantly influence public health policies, emphasizing the need for effective vaccination strategies, risk communication, and consideration of cultural factors to address challenges in vaccine adoption, health behaviors, and societal stigma.

Keywords:

reinfection respiratory viruses measles virus epitope vaccine

References

  1. Zhao, P.; Zhang, Y.; Wang, J.; et al. Epidemiology of respiratory pathogens in patients with acute respiratory infections during the COVID-19 pandemic and after easing of COVID-19 restrictions. Microbiol. Spectr. 2024, 12, e0116124. doi: 10.1128/spectrum.01161-24
  2. Buchholz, U.J.; Collins, P.L.; Mejias, A. Respiratory Syncytial Virus and Metapneumovirus. In Fields Virology, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2021; Volume 3, pp. 267–317.
  3. Kimura, H.; Saitoh, M.; Kobayashi, M.; et al. Molecular evolution of haemagglutinin (H) gene in measles virus. Sci. Rep. 2015, 5, 11648. doi: 10.1038/srep11648
  4. Nagasawa, N.; Kimura, R.; Akagawa, M.; et al. Molecular Evolutionary Analyses of the Spike Protein Gene and Spike Protein in the SARS-CoV-2 Omicron Subvariants. Microorganisms 2023, 11, 2336. doi: 10.3390/microorganisms11092336
  5. Saito, M.; Tsukagoshi, H.; Sada, M.; et al. Detailed Evolutionary Analyses of the F Gene in the Respiratory Syncytial Virus Subgroup A. Viruses 2021, 13, 2525. doi: 10.3390/v13122525
  6. Aso, J.; Kimura, H.; Ishii, H.; et al. Molecular Evolution of the Fusion Protein (F) Gene in Human Respirovirus 3. Front. Microbiol. 2019, 10, 3054. doi: 10.3389/fmicb.2019.03054
  7. Aso, J.; Kimura, H.; Ishii, H.; et al. Molecular evolution of the hemagglutinin-neuraminidase (HN) gene in human respirovirus 3. Virus Res. 2020, 277, 197824. doi: 10.1016/j.virusres.2019.197824
  8. Akagawa, M.; Shirai, T.; Sada, M.; et al. Detailed Molecular Interactions between Respiratory Syncytial Virus Fusion Protein and the TLR4/MD-2 Complex In Silico. Viruses 2022, 14, 2382. doi: 10.3390/v14112382
  9. Sada, M.S.T.; Kimura, H. Respiratory Syncytial Viruses. In Phylogenomics, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 443–462. doi: 10.1016/B978-0-323-99886-4.00023-5
  10. Van Regenmortel, M.H. Antigenicity and immunogenicity of synthetic peptides. Biologicals 2001, 29, 209–213. doi: 10.1006/biol.2001.0308
  11. Kulkarni-Kale, U.; Bhosle, S.; Kolaskar, A.S. CEP: A conformational epitope prediction server. Nucleic Acids Res. 2005, 33, W168–W171. doi: 10.1093/nar/gki460
  12. Hashiguchi, T.; Ose, T.; Kubota, M.; et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 2011, 18, 135–141. doi: 10.1038/nsmb.1969
  13. Griffin, D.E. Measles Virus, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2021; Volume 3, pp. 228–266.
  14. Tatsuo, H.; Ono, N.; Tanaka, K.; et al. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000, 406, 893–897. doi: 10.1038/35022579
  15. Rosen, L. Hemagglutination and hemagglutination-inhibition with measles virus. Virology 1961, 13, 139–141. doi: 10.1016/0042-6822(61)90042-3
  16. de Swart, R.L.; Yuksel, S.; Osterhaus, A.D. Relative contributions of measles virus hemagglutinin- and fusion protein-specific serum antibodies to virus neutralization. J. Virol. 2005, 79, 11547–11551. doi: 10.1128/JVI.79.17.11547-11551.2005
  17. Park, A.W.; Daly, J.M.; Lewis, N.S.; et al. Quantifying the impact of immune escape on transmission dynamics of influenza. Science 2009, 326, 726–728. doi: 10.1126/science.1175980
  18. Krammer, F.; Palese, P. Advances in the development of influenza virus vaccines. Nat. Rev. Drug Discov. 2015, 14, 167–182. doi: 10.1038/nrd4529
  19. Guedes, A.R.; Oliveira, M.S.; Tavares, B.M.; et al. Reinfection rate in a cohort of healthcare workers over 2 years of the COVID-19 pandemic. Sci. Rep. 2023, 13, 712. doi: 10.1038/s41598-022-25908-6
  20. Wrapp, D.; Wang, N.; Corbett, K.S.; et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. doi: 10.1126/science.abb2507
  21. ter Meulen, J.; van den Brink, E.N.; Poon, L.L.; et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006, 3, e237. doi: 10.1371/journal.pmed.0030237
  22. Maykowski, P.; Smithgall, M.; Zachariah, P.; et al. Seasonality and clinical impact of human parainfluenza viruses. Influenza Other Respir. Viruses 2018, 12, 706–716. doi: 10.1111/irv.12597
  23. Griffiths, C.; Drews, S.J.; Marchant, D.J. Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clin. Microbiol. Rev. 2017, 30, 277–319. doi: 10.1128/CMR.00010-16
  24. Kim, H.W.; Canchola, J.G.; Brandt, C.D.; et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. doi: 10.1093/oxfordjournals.aje.a120955
  25. Chin, J.; Magoffin, R.L.; Shearer, L.A.; et al., Field Evaluation of a Respiratory Syncytial Virus Vaccine and a Trivalent Parainfluenza Virus Vaccine in a Pediatric Population. Am. J. Epidemiol. 1969, 89, 449–463. doi: 10.1093/oxfordjournals.aje.a120957
  26. Maljkovic Berry, I.; Melendrez, M.C.; Li, T.; et al. Frequency of influenza H3N2 intra-subtype reassortment: Attributes and implications of reassortant spread. BMC Biol. 2016, 14, 117. doi: 10.1186/s12915-016-0337-3
  27. Focosi, D.; Maggi, F. Second-Generation SARS-CoV-2 Recombinants: Lessons from Other Viruses. Viruses 2023, 15, 1063. doi: 10.3390/v15051063
  28. Smith, G.J.; Vijaykrishna, D.; Bahl, J.; et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. doi: 10.1038/nature08182
  29. Galagali, P.M.; Kinikar, A.A.; Kumar, V.S. Vaccine Hesitancy: Obstacles and Challenges. Curr. Pediatr. Rep. 2022, 10, 241–248. doi: 10.1007/s40124-022-00278-9
  30. Haanschoten, E.D.H.; Reses, H.E.; Barbre, K.; et al. Disparities in COVID-19 Vaccination Status Among Long-Term Care Facility Residents—United States, October 31, 2022–May 7, 2023. Morb. Mortal. Wkly. Rep. 2023, 72, 1095–1098. doi: 10.15585/mmwr.mm7240a4
  31. Peano, A.; Politano, G.; Gianino, M.M. Determinants of COVID-19 vaccination worldwide: WORLDCOV, a retrospective observational study. Front. Public Health 2023, 11, 1128612. doi: 10.3389/fpubh.2023.1128612
  32. Randolph, H.E.; Barreiro, L.B. Herd Immunity: Understanding COVID-19. Immunity 2020, 52, 737–741. doi: 10.1016/j.immuni.2020.04.012
  33. Houser, K.; Subbarao, K. Influenza vaccines: Challenges and solutions. Cell Host Microbe 2015, 17, 295–300. doi: 10.1016/j.chom.2015.02.012
  34. Noah, N. Surveillance of Infectious Diseases. In Encyclopedia of Virology, 4th ed.; Academic Press: Cambridge, MA, USA 2021; Volume 5. doi: 10.1016/B978-0-12-814515-9.00068-0
  35. Kaye, A.D.; Okeagu, C.N.; Pham, A.D.; et al. Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 293–306. doi: 10.1016/j.bpa.2020.11.009
  36. Broadbent, L.; Groves, H.; Shields, M.D.; et al. Respiratory syncytial virus, an ongoing medical dilemma: An expert commentary on respiratory syncytial virus prophylactic and therapeutic pharmaceuticals currently in clinical trials. Influenza Other Respir. Viruses 2015, 9, 169–178. doi: 10.1111/irv.12313
  37. Martinelli, L.; Kopilas, V.; Vidmar, M.; et al. Face Masks During the COVID-19 Pandemic: A Simple Protection Tool With Many Meanings. Front. Public Health 2020, 8, 606635. doi: 10.3389/fpubh.2020.606635
  38. Alkhamis, M.A.; Perez, A.M.; Murtaugh, M.P.; et al. Applications of Bayesian Phylodynamic Methods in a Recent U.S. Porcine Reproductive and Respiratory Syndrome Virus Outbreak. Front. Microbiol. 2016, 7, 67. doi: 10.3389/fmicb.2016.00067