
Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Solar Thermal Technologies for Biofuel Production: Recent Advances and Future Prospectus
Amit Kumar Sharma 1,2
1 Department of Chemistry, Applied Sciences Cluster, School of Advance Engineering, University of Petroleum and Energy Studies (UPES) University, Dehradun 24806, India; amitsharma@ddn.upes.ac.in or amit.orgchemistry@gmail.com
2 Centre for Alternate Energy Research, R & D University of Petroleum and Energy Studies (UPES) University, Dehradun 24806, India
Received: 13 August 2024; Revised: 3 November 2024; Accepted: 7 November 2024; Published: 11 February 2025
Abstract: Solar thermal biomass conversion technologies are gaining significant interest due to their cost-effectiveness and eco-friendly nature. In these systems, solar thermal heating replaces the traditional electrical heating source as the reactor, as used in conventional thermal technologies. This approach generates higher-calorific-value products with reduced CO2 emissions compared to standard thermal methods, effectively capturing intermittent solar energy and storing it in the form of solar fuels. This review discussess the integration of solar energy with conventional bioenergy production methods through thermal processes, including torrefaction, pyrolysis, gasification, and hydrothermal liquefaction. Recent advancements have highlighted the effective use of solar collectors, including Scheffler dishes, heliostats, and Fresnel lenses, in solar thermal bioconversion applications. Therefore, we comprehensively describe the advances in solar thermal biomass conversion technologies. The design and operational parameters for efficient solar thermal technologies are also discussed. Furthermore, the challenges and future prospectus of these technologies has are summarized. In conclusion, this review shows that the production of biofuels from various carboneous biomasses through solar thermal technologies represents a sustainable option for various energy applications.
Keywords:
solar thermal energy pyrolysis gasification torrefaction hydrothermal liquefaction catalyst Bio-oil sustainabilityReferences
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; et al. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 2022, 324, 124663. https://doi.org/10.1016/j.fuel.2022.124663.
- Ramos, M.; Dias, A.P.S.; Puna, J.F.; et al. Biodiesel Production Processes and Sustainable Raw Materials. Energies 2019, 12, 4408. https://doi.org/10.3390/en12234408.
- Chen, W.-H.; Naveen, C.; Ghodke, P.K.; et al. Co-pyrolysis of lignocellulosic biomass with other carbonaceous materials: A review on advance technologies, synergistic effect, and future prospectus. Fuel 2023, 345, 128177. https://doi.org/10.1016/j.fuel.2023.128177.
- Sharma, A.K.; Kumar Ghodke, P.; Manna, S.; et al. Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. Bioresour. Technol. 2021, 342, 126057. https://doi.org/10.1016/j.biortech.2021.126057.
- Chintala, V.; Kumar, S.; Pandey, J.K.; et al. Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Convers. Manag. 2017, 153, 482–492. https://doi.org/10.1016/j.enconman.2017.10.029.
- Lee, J.; Kim, S.; You, S.; et al. Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew. Sustain. Energy Rev. 2023, 178, 113240. https://doi.org/10.1016/j.rser.2023.113240.
- Ghodke, P.K.; Antony, C.; Sharma, A.K. Opportunity and Challenges in Biofuel Productions through Solar Thermal Technologies. In Renewable Energy Innovations: Biofuels, Solar, and Other Technologies; Wiley: Hoboken, NJ, USA, 2024; pp. 267–287. https://doi.org/10.1002/9781119785712.ch10.
- Joardder, M.U.H.; Halder, P.K.; Rahim, A.; et al. Solar Assisted Fast Pyrolysis: A Novel Approach of Renewable Energy Production. J. Eng. 2014, 2014, 252848. https://doi.org/10.1155/2014/252848.
- Sobek, S.; Werle, S. Solar pyrolysis of waste biomass: Part 1 reactor design. Renew. Energy 2019, 143, 1939–1948. https://doi.org/10.1016/j.renene.2019.06.011.
- Weldekidan, H.; Strezov, V.; Town, G. Review of solar energy for biofuel extraction. Renew. Sustain. Energy Rev. 2018, 88, 184–192. https://doi.org/10.1016/j.rser.2018.02.027.
- Joshi, G.; Pandey, J.K.; Rana, S.; et al. Challenges and opportunities for the application of biofuel. Renew. Sustain. Energy Rev. 2017, 79, 850–866. doi: 10.1016/j.rser.2017.05.185
- Sharma, A.K.; Ghodke, P.; Sharma, P.K.; et al. Holistic utilization of Chlorella pyrenoidosa microalgae for extraction of renewable fuels and value-added biochar through in situ transesterification and pyrolysis reaction process. Biomass Convers. Biorefin 2022. https://doi.org/10.1007/s13399-022-02713-9.
- Havilah, P.R.; Sharma, A.K.; Govindasamy, G.; et al. Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies 2022, 15, 3938. https://doi.org/10.3390/en15113938.
- Castello, D.; Pedersen, T.; Rosendahl, L. Continuous Hydrothermal Liquefaction of Biomass: A Critical Review. Energies 2018, 11, 3165. https://doi.org/10.3390/en11113165.
- Kumar, K.R.; Chaitanya, N.K.; Kumar, N.S. Solar thermal energy technologies and its applications for process heating and power generation—A review. J. Clean. Prod. 2021, 282, 125296. https://doi.org/10.1016/j.jclepro.2020.125296.
- Chintala, V. Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass—A technical review. Renew. Sustain. Energy Rev. 2018, 90, 120–130. https://doi.org/10.1016/j.rser.2018.03.066.
- Naveen, C.; Ghodke, P.K.; Sharma, A.K.; et al. Pyrolysis of post-methanated distillery effluent (PMDE) solid waste: Thermogravimetric degradation, kinetic and thermodynamic study with a circular bioeconomy approach. Env. Environ. Technol. Innov. 2023, 31, 103202. https://doi.org/10.1016/j.eti.2023.103202.
- Soria, J.; Li, R.; Flamant, G.; et al. Influence of pellet size on product yields and syngas composition during solar-driven high temperature fast pyrolysis of biomass. J. Anal. Appl. Pyrolysis 2019, 140, 299–311. https://doi.org/10.1016/j.jaap.2019.04.007.
- Lédé, J. Solar Thermochemical Conversion of biomass. Sol. Energy 1999, 65, 3–13. https://doi.org/10.1016/S0038-092X(98)00109-1.
- Wu, H.; Gauthier, D.; Yu, Y.; et al. Solar-Thermal Pyrolysis of Mallee Wood at High Temperatures. Energy Fuels 2018, 32, 4350–4356. https://doi.org/10.1021/acs.energyfuels.7b03091.
- Xie, Y.; Zeng, K.; Flamant, G.; et al. Solar pyrolysis of cotton stalk in molten salt for bio-fuel production. Energy 2019, 179, 1124–1132. https://doi.org/10.1016/j.energy.2019.05.055.
- Zeng, K.; Gauthier, D.; Minh, D.P.; et al. Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel 2017, 188, 285–293. https://doi.org/10.1016/j.fuel.2016.10.036.
- Uzakov, G.N.; Almardanov, X.A. Heliopyrolysis of Sunflower Waste Using a Parabolic Solar Concentrator. Appl. Sol. Energy 2024, 60, 171–177. https://doi.org/10.3103/S0003701X24600140.
- Suárez-Almeida, M.; Gómez-Barea, A.; Ghoniem, A.F.; et al. Solar gasification of biomass in a dual fluidized bed. Chem. Eng. J. 2021, 406, 126665. https://doi.org/10.1016/j.cej.2020.126665.
- Fang, Y.; Paul, M.C.; Varjani, S.; et al. Concentrated solar thermochemical gasification of biomass: Principles, applications, and development. Renew. Sustain. Energy Rev. 2021, 150, 111484. https://doi.org/10.1016/j.rser.2021.111484.
- Xu, D.; Gu, X.; Dai, Y. Concentrating solar assisted biomass-to-fuel conversion through gasification: A review. Front. Energy Res. 2023, 10, 1029477. https://doi.org/10.3389/fenrg.2022.1029477.
- Piatkowski, N.; Wieckert, C.; Weimer, A.W.; et al. Solar-driven gasification of carbonaceous feedstock—A review. Energy Env. Environ. Sci. 2011, 4, 73–82. https://doi.org/10.1039/C0EE00312C.
- Ravaghi-Ardebili, Z.; Manenti, F.; Corbetta, M.; et al. Biomass gasification using low-temperature solar-driven steam supply. Renew. Energy 2015, 74, 671–680. https://doi.org/10.1016/j.renene.2014.07.021.
- Bai, Z.; Liu, Q.; Gong, L.; et al. Thermodynamic and economic analysis of a solar-biomass gasification system with the production of methanol and electricity. Energy Procedia 2018, 152, 1045–1050. https://doi.org/10.1016/j.egypro.2018.09.118.
- Zhong, D.; Zeng, K.; Li, J.; et al. 3E analysis of a biomass-to-liquids production system based on solar gasification. Energy 2021, 217, 119408. https://doi.org/10.1016/j.energy.2020.119408.
- Service, R.F. Sunlight in Your Tank. Science 2009, 326, 1472–1475. https://doi.org/10.1126/science.326.5959.1472.
- using hydrothermal liquefaction: A comprehensive review. Renew. Sustain. Energy Rev. 2024, 189, 113976. https://doi.org/10.1016/j.rser.2023.113976.
- Basar, I.A.; Liu, H.; Carrere, H.; et al. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green. Chem. 2021, 23, 1404–1446. https://doi.org/10.1039/D0GC04092D.
- Ayala-Cortés, A.; Arcelus-Arrillaga, P.; Millan, M.; et al. Solar integrated hydrothermal processes: A review. Renew. Sustain. Energy Rev. 2021, 139, 110575. https://doi.org/10.1016/j.rser.2020.110575.
- Tsongidis, N.I.; Poravou, C.A.; Zacharopoulou, V.A.; et al. Valorization of organic waste with the aid of solar hydrothermal liquefaction technology. In Proceedings of the SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, Korea; AIP Publishing: Melville, NY, USA, 2020; p. 170015. https://doi.org/10.1063/5.0028774.
- Ayala-Cortés, A.; Arcelus-Arrillaga, P.; Pacheco-Catalán, D.E.; et al. Solar hydrothermal liquefaction: Effect of the operational parameters on the fuels. MRS Adv. 2022, 7, 24–27. https://doi.org/10.1557/s43580-021-00204-z.
- Giaconia, A.; Caputo, G.; Ienna, A.; et al. Biorefinery process for hydrothermal liquefaction of microalgae powered by a concentrating solar plant: A conceptual study. Appl. Energy 2017, 208, 1139–1149. https://doi.org/10.1016/j.apenergy.2017.09.038.
- Wang, C.; Peng, J.; Li, H.; et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour. Technol. 2013, 127, 318–325. https://doi.org/10.1016/j.biortech.2012.09.092.
- Tregambi, C.; Montagnaro, F.; Salatino, P.; et al. Solar-Driven Torrefaction of a Lignin-Rich Biomass Residue in a Directly Irradiated Fluidized Bed Reactor. Combust. Sci. Technol. 2019, 191, 1609–1627. https://doi.org/10.1080/00102202.2019.1607847.
- Chen, W.-H.; Lin, B.-J.; Lin, Y.-Y.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887.
- Cellatoğlu, N.; İlkan, M. Solar Torrefaction of Solid Olive Mill Residue. Bioresources 2016;11. https://doi.org/10.15376/biores.11.4.10087-10098.
- Chen, D.; Cen, K.; Gan, Z.; et al. Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: Characterization of property variation and energy usage with torrefaction severity. Appl. Energy Combust. Sci. 2022, 9, 100051. https://doi.org/10.1016/j.jaecs.2021.100051.
- Zeng, K.; Gauthier, D.; Li, R.; et al. Solar pyrolysis of beech wood: Effects of pyrolysis parameters on the product distribution and gas product composition. Energy 2015, 93, 1648–1657. https://doi.org/10.1016/j.energy.2015.10.008.
- Ghenai, C.; Farah, R.A.; Al Saidi, O.; et al. Performance analysis and biofuels conversion yield correlations for solar-thermal wood chips pyrolysis reactor using response surface methodology. Case Stud. Therm. Eng. 2022, 36, 102225. https://doi.org/10.1016/j.csite.2022.102225.
- Sobek, S.; Werle, S. Solar pyrolysis of waste biomass: A comparative study of products distribution, in situ heating behavior, and application of model-free kinetic predictions. Fuel 2021, 292, 120365. https://doi.org/10.1016/j.fuel.2021.120365.
- Li, X.; Shen, Y.; Wei, L.; et al. Hydrogen production of solar-driven steam gasification of sewage sludge in an indirectly irradiated fluidized-bed reactor. Appl. Energy 2020, 261, 114229. https://doi.org/10.1016/j.apenergy.2019.114229.
- Chuayboon, S.; Abanades, S. Continuous solar-driven gasification of oil palm agricultural bio waste for high-quality syngas production. Waste Manag. 2022, 154, 303–311. https://doi.org/10.1016/j.wasman.2022.10.015.
- Ayala-Cortés, A.; Arcelus-Arrillaga, P.; Millan, M.; et al. Solar hydrothermal processing of agave bagasse: Insights on the effect of operational parameters. Renew. Energy 2022, 192, 14–23. https://doi.org/10.1016/j.renene.2022.04.059.
- Liao, B.; Guo, L.J. Concentrating Solar Thermochemical Hydrogen Production by Biomass Gasification in Supercritical Water. Energy Procedia 2015, 69, 444–450. https://doi.org/10.1016/j.egypro.2015.03.051.
- Rodríguez-Alejandro, D.A.; Nam, H.; Granados-Lieberman, D.; et al. Experimental and numerical investigation on a solar-driven torrefaction reactor using woody waste (Ashe Juniper). Energy Convers. Manag. 2023, 288, 117114. https://doi.org/10.1016/j.enconman.2023.117114.
- Chen, D.; Cen, K.; Chen, F.; et al. Solar pyrolysis of cotton stalks: Combined effects of torrefaction pretreatment and HZSM-5 zeolite on the bio-fuels upgradation. Energy Convers. Manage. 2022, 261, 115640. https://doi.org/10.1016/j.enconman.2022.115640
- Hamed, A.S.A.; Yusof, N.I.F.M.; Yahya, M.S.; et al. Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context. Renew. Sustain. Energy Rev. 2023, 188, 113834. https://doi.org/10.1016/j.rser.2023.113834.
- Thirugnanasambandam, M.; Iniyan, S.; Goic, R. A review of solar thermal technologies☆. Renew. Sustain. Energy Rev. 2010, 14, 312–322. https://doi.org/10.1016/j.rser.2009.07.014.
- Ndukwu, M.C.; Horsfall, I.T.; Ubouh, E.A.; et al. Review of solar-biomass pyrolysis systems: Focus on the configuration of thermal-solar systems and reactor orientation. J. King Saud. Univ. Eng. Sci. 2020, 33, 413–423. https://doi.org/10.1016/j.jksues.2020.05.004.
- Chintala, V.; Sharma, A.K.; Karn, A.; et al. Utilization of biomass-derived pyro-oils in compression ignition (CI) engines–Recent developments. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 46, 986–1000. https://doi.org/10.1080/15567036.2019.1683652.
- Abanades, S.; Rodat, S.; Boujjat, H. Solar Thermochemical Green Fuels Production: A Review of Biomass Pyro-Gasification, Solar Reactor Concepts and Modelling Methods. Energies 2021, 14, 1494. https://doi.org/10.3390/en14051494.
- Loutzenhiser, P.G.; Muroyama, A.P. A review of the state-of-the-art in solar-driven gasification processes with carbonaceous materials. Sol. Energy 2017, 156, 93–100. https://doi.org/10.1016/j.solener.2017.05.008.
- Tezer, Ö.; Karabağ, N.; Öngen, A.; et al. Syngas production from municipal sewage sludge by gasification Process: Effects of fixed bed reactor types and gasification agents on syngas quality. Sustain. Energy Technol. Assess. 2023, 56, 103042. https://doi.org/10.1016/j.seta.2023.103042.
- Lichty, P.; Perkins, C.; Woodruff, B.; et al. Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor. J. Sol. Energy Eng. 2010;132. https://doi.org/10.1115/1.4000356.
- Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. https://doi.org/10.1016/j.mset.2021.08.009.
- Bai, Z.; Hu, W.; Zhu, X.; et al. Solar-driven biomass steam gasification by new concept of solar particles heat carrier with CPFD simulation. Energy Convers. Manag. 2023, 293, 117500. https://doi.org/10.1016/j.enconman.2023.117500.
- Iakovou, E.; Karagiannidis, A.; Vlachos, D.; et al. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag. 2010, 30, 1860–1870. https://doi.org/10.1016/J.WASMAN.2010.02.030.
- Ong, H.C.; Chen, W.-H.; Farooq, A.; et al. Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 113, 109266. https://doi.org/10.1016/j.rser.2019.109266.
- Chen, W.H.; Cheng, C.L.; Lee, K.T.; et al. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere 2021, 271, 129510. https://doi.org/10.1016/j.chemosphere.2020.129510.
- Meier, A.; Steinfeld, A. Solar Thermochemical Production of Fuels. Adv. Sci. Technol. 2010, 74, 303–312. https://doi.org/10.4028/www.scientific.net/ast.74.303.
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. https://doi.org/10.1016/j.rser.2017.05.178.