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Abstract: Diabetes mellitus poses a significant global health challenge, impacting hundreds of millions worldwide. 

Effective management and prevention of complications rely on dynamic, real-time glucose monitoring. This 

review provides a comprehensive overview of the rapidly evolving landscape of wearable technologies for glucose 

monitoring and diabetes care, with a focus on cutting-edge advancements and their integration with artificial 

intelligence (AI) and multi-omics data. We explore diverse glucose monitoring approaches, including continuous 

glucose monitors (CGMs) and smartwatches, highlighting their contributions to tracking physical activity, food 

intake, medication adherence, and direct glucose measurements. Our emphasis is placed on the role of AI systems 

in enabling predictive analytics and personalized care, as well as the integration of wearable data with multi-omics 

insights—spanning genomics, proteomics, and gut microbiome analyses—to enhance understanding of individual 

glucose metabolism. Given the challenges of existing methods, such as invasiveness, accuracy, and accessibility, 

we discuss future directions, including the potential of smart glasses, advanced AI models, and seamless data 

integration, to revolutionize diabetes management. This review offers valuable insights into how wearable 

technologies, AI, and multi-source data analysis are shaping the future of precision diabetes care. 

Keywords: diabetes mellitus; glucose monitoring; wearable devices; artificial intelligence; multi-omics; digital 

health 

 

1. Introduction 

Diabetes mellitus stands as one of the most urgent global health challenges, impacting millions worldwide 

[1]. The International Diabetes Federation reports that the global diabetes population reached 537 million adults 

in 2023, with projections estimating a rise to 1.03 billion by 2045 (Figure 1a) [2]. The condition is linked to serious 

vascular complications, including cardiovascular disease, kidney failure, blindness, and lower-limb amputations 

(Figure 1b) [3], highlighting the urgent need for effective management strategies. 

Glucose monitoring plays a fundamental role in diabetes management [4,5]. Maintaining blood glucose levels 

within target ranges helps prevent both acute complications (hypoglycemia and hyperglycemia) and long-term 

complications (neuropathy and retinopathy) [6]. Regular monitoring enables individuals to make timely 

adjustments to their diet, exercise regimens, and medication protocols, thereby improving their overall quality of 

life [7,8]. Traditionally, glucose monitoring has relied on Self-Monitoring of Blood Glucose (SMBG) through 

finger-prick tests (Figure 1c) [9,10]. While SMBG provides valuable data points, it has significant limitations, 

including its invasive nature, the requirement for multiple daily tests, and the inability to provide continuous or 

real-time data (Figure 1c) [10,11]. These drawbacks have catalyzed the development of less invasive, more 

dynamic monitoring solutions. 

In recent years, a revolution has been witnessed in glucose monitoring through wearable devices (Figure 1d) 

[12–14]. Continuous Glucose Monitors (CGMs) gained widespread adoption, offering real-time glucose readings, 

trend data, and alerts for abnormal glucose levels [15]. These devices significantly enhance diabetes management 
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capabilities [15]. However, CGMs face certain limitations, including their invasive nature, high costs, and 

occasional accuracy issues [16,17]. 

Beyond CGMs, innovative wearable technologies are being developed to address these challenges [16]. 

Novel approaches include smartwatches with integrated glucose sensors and human stretchable sweat-based 

systems, which promise truly non-invasive glucose monitoring [18,19]. Some wearable devices integrate multiple 

other data, including physical activity, dietary logs, and medication log data, to provide comprehensive prediction 

capabilities and glucose monitoring [20]. 

This review provides a systematic analysis of the current landscape of wearable devices for glucose 

monitoring and diabetes management, highlighting their benefits, limitations, and future potential. Special 

emphasis is placed on the transformative role of advancements in artificial intelligence (AI), advanced wearable 

technologies, and multi-omics data integration in shaping the future of glucose prediction and monitoring. By 

exploring emerging innovations, this review offers valuable insights into how these technologies are driving the 

development of more precise, personalized, and proactive solutions for enhanced diabetes care. 

 

Figure 1. Diabetes demographics and the importance of effective diabetes management. (a) Global diabetes 

statistics: The left panel depicts the number of individuals with diabetes worldwide, while the right panel illustrates 

the prevalence of diabetes. Historical data is represented in orange, and future projections are shown in blue. (b) 

Long-term complications associated with diabetes affect multiple organ systems, including the heart, kidneys, eyes, 

and limbs. (c) Traditional self-monitoring of blood glucose through finger-prick blood sampling highlights its 

limitations in providing continuous glucose data. (d) Current advancements in wearable technologies for glucose 

monitoring and diabetes management showcase their potential to track physical activity, food intake, medication 

adherence, and glucose levels in real-time. 

2. Glucose Monitoring in Diabetes 

Effective glucose monitoring forms the cornerstone of diabetes management, enabling individuals to 

maintain glycemic control, minimize complications, and adapt treatment strategies dynamically [21]. Blood 

glucose levels fluctuate due to multiple factors, including food intake, physical activity, and medication intake 

[22,23]. Dynamic, real-time monitoring facilitates immediate adjustments to prevent potentially life-threatening 

episodes of hyperglycemia or hypoglycemia [24]. For patients with insulin-dependent diabetes, frequent self-

monitoring has demonstrated significant improvements in metabolic control by enabling precise insulin 

adjustments and fostering a deeper understanding of glucose variability patterns [25,26]. Continuous Glucose 

Monitor (CGM) systems further enhance management capabilities by providing real-time data and trends, which 

is essential for implementing personalized treatment strategies [27]. 

Blood glucose regulation is influenced by several key factors: 
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1. Genetic and environmental factors: Individual genetic predisposition influences insulin sensitivity, while 

stress hormones, particularly cortisol, can significantly elevate glucose levels [28]. 

2. Physical activity: Exercise generally reduces blood glucose levels through enhanced insulin sensitivity and 

glucose uptake, though careful management is required to prevent exercise-induced hypoglycemia [29,30]. 

3. Dietary intake: Carbohydrate-rich meals typically lead to postprandial glucose spikes, while protein and fat 

content can modulate glycemic responses through different metabolic pathways [31,32]. 

4. Medication: Insulin and oral hypoglycemic agents directly affect glucose metabolism, while other 

medications may have secondary impacts on glycemic control [5]. 

Modern wearable devices employ two distinct approaches for glucose monitoring. The first category 

comprises devices that directly detect glucose levels in interstitial fluid, sweat, or blood through biosensors [33]. 

The second category includes devices that predict glucose levels by analyzing the correlated factors we mentioned 

above. These wearables monitor various physiological parameters, such as heart rate, physical activity, skin 

temperature, food/medication intake, and stress levels to estimate glucose trends (Figure 1d) [34–38]. Stress, a 

critical factor influencing glucose variability through its effects on cortisol secretion and insulin sensitivity, can be 

monitored using wearable sensors that track heart rate variability (HRV) or galvanic skin response (GSR) [16,39]. 

Advanced machine learning models enhance the predictive accuracy of these systems, potentially reducing the 

frequency of direct glucose sampling to minimize the discomfort associated with invasive sampling methods [40]. 

The integration of these monitoring technologies into broader digital health ecosystems enables 

comprehensive remote monitoring and timely interventions [26]. This dual approach, combining direct 

measurement and predictive monitoring methods, represents the current state-of-the-art in glucose monitoring and 

diabetes management, offering personalized and proactive solutions for both patients and healthcare providers. 

The following sections provide a systematic review of these wearable technologies, examining their applications 

in glucose monitoring. 

3. Wearable Devices in Physical Activity Monitoring 

Physical activity represents a critical determinant of glucose metabolism, directly influencing insulin 

sensitivity and glucose uptake in skeletal muscle tissues [41,42]. Regular physical activity strongly correlates with 

improved glycemic control and reduced risk of diabetes-related complications [43]. Conversely, sedentary 

behavior can exacerbate insulin resistance and increase glycemic variability [44]. 

Modern wearable devices, particularly smartwatches and fitness trackers, have become indispensable tools 

for physical activity monitoring (Figure 2a) [45]. These devices incorporate multiple sensors, including 

accelerometers, heart rate monitors, and gyroscopes, to provide comprehensive real-time data on steps taken, 

calories expended, and activity intensity levels (Figure 2a) [46]. The integration of these devices with mobile 

health platforms enables continuous monitoring and feedback mechanisms, empowering patients with actionable 

insights into their physical activity and their relationship to glycemic control [47]. 

In diabetes management, wearable devices for physical activity monitoring serve several crucial functions: 

1. Exercise plan customization: Devices help optimize activity timing and intensity based on individual 

glucose responses [21,48]. 

2. Glycemic fluctuation management: Real-time activity data enables better prediction and prevention of 

exercise-induced glycemic variations. 

3. Insulin sensitivity enhancement: Continuous monitoring helps track improvements in insulin sensitivity 

related to regular physical activity. 

Fitness trackers integrated with smartphone applications have demonstrated significant benefits in enhancing 

patient adherence to activity goals and improving self-management practices [49]. These devices also contribute 

substantially to glucose prediction capabilities. Through continuous monitoring of physical activity, heart rate, and 

other physiological markers, these devices generate valuable data that can be analyzed with CGM readings [50,51]. 

The role of wearable devices in physical activity monitoring extends beyond simple step counting or calorie 

tracking. These technologies have become integral components of comprehensive diabetes management systems, 

providing valuable data for both immediate decision-making and long-term care optimization. As these 

technologies continue to evolve, their integration with other monitoring systems promises increasingly 

sophisticated and personalized approaches to diabetes management. 
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Figure 2. Wearable devices for monitoring physical activity, food, and medication in diabetes management. 

(a) Smartwatches and smartphones equipped with various sensors can monitor key health parameters, including 

physical activity, blood pressure, sleep, heart rate, food intake, and medication usage. RPG: Respiratory 

Plethysmogram; SCG: Seismocardiogram; PPG: Photoplethysmogram; ECG: Electrocardiogram; BCG 

Ballistocardiogram. (b) Smartphones with integrated cameras facilitate food and medication monitoring by 

enabling users to record and analyze their intake. (c) By combining data from physical activity, food, and 

medication monitoring with glucose levels, AI-powered systems can provide personalized recommendations for 

diet, medication, and exercise, enhancing diabetes management. 

4. Wearable Devices in Food and Medication Monitoring 

Food and medication intake monitoring represents a critical component of effective diabetes management, as 

these factors significantly influence glucose dynamics and therapeutic outcomes [52,53]. The accurate tracking 

and analysis of food and medication intake are essential for optimizing glycemic control, particularly given their 

complex interactions with glucose metabolism (Figure 2a) [54]. Modern wearable devices and their integrated 

applications offer innovative approaches to monitoring these crucial variables, enabling more precise and 

personalized management strategies (Figure 2a) [55]. 

Recent technological advancements have led to the development of sophisticated devices and applications 

for recording and analyzing food and medication intake. Smartphones equipped with cameras and specialized 

applications have become powerful tools for semi-automated food recognition and nutritional analysis [56]. 

Currently, two primary methods are used to monitor food and medication via smartphones. The first is the manual 

method, where users manually record the type and quantity of food they consume daily (Figure 2b). The second is 

a semi-automated approach, where users take pictures of their meals and beverages. These images are then 

processed by AI-powered systems to identify food items and estimate portion sizes (Figure 2b) [46]. Advanced 

mobile applications further enhance these functionalities by incorporating machine learning algorithms for semi-

automated meal logging, as well as features for medication scheduling and adherence tracking (Figure 2b) [57,58]. 

The integration of food and medication monitoring data with CGM systems enables sophisticated predictive 

analytics capabilities. Machine learning algorithms analyze complex patterns in dietary responses and medication 

effectiveness, generating personalized recommendations for meal choices and medication timing. This integration 

supports more precise insulin dosing decisions and helps optimize overall glycemic control [59]. 

The convergence of food and medication monitoring technologies with broader diabetes management 

systems represents a significant advancement in personalized care. These integrated platforms combine dietary 

and pharmacological data with glucose monitoring insights to optimize therapeutic regimens and improve 

medication adherence. Advanced analytical capabilities powered by machine learning algorithms provide 
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predictive analytics for glucose responses and real-time decision support for both patients and healthcare providers 

(Figure 2c) [60]. 

In conclusion, wearable devices for food and medication monitoring are transforming diabetes management 

through enhanced precision and personalization. By enabling accurate tracking and predictive analytics, these 

technologies empower both patients and healthcare providers to achieve better glycemic control and improve 

overall treatment outcomes. 

5. Wearable Devices in Direct Glucose Monitoring 

Direct glucose monitoring technologies have witnessed remarkable advancements in recent years, with 

wearable devices becoming fundamental to modern diabetes management [60]. The evolution of these 

technologies spans a spectrum from traditional CGM systems to innovative non-invasive monitoring solutions, 

including smartwatches and sweat-based sensors, each offering unique advantages and capabilities [61]. 

CGM systems remain the gold standard for real-time glucose monitoring in clinical practice. These devices 

utilize minimally invasive sensors inserted subcutaneously to measure glucose levels continuously in interstitial 

fluid (Figure 3a). The ability to provide real-time data enables users to track glucose trends and predict potential 

fluctuations, allowing dynamic therapy adjustments. Clinical studies have demonstrated that CGM systems 

significantly improve glycemic control while reducing the frequency of hypoglycemic and hyperglycemic episodes, 

making them invaluable tools for diabetes management [59]. 

The integration of glucose detection capabilities into smartwatches represents a significant advancement 

toward non-invasive glucose monitoring (Figure 3b). Unlike traditional CGM systems, smartwatch-based monitors 

employ optical or bioimpedance sensors to estimate glucose levels without penetrating the skin (Figure 3b) [62]. 

These devices analyze various physiological parameters, including heart rate variability, blood flow patterns, and 

skin characteristics, to infer glucose concentrations [63–65]. While this technology shows promise in increasing 

accessibility and user compliance due to its non-invasive nature, ongoing research continues to focus on improving 

measurement accuracy and reliability [66]. 

Emerging wearable technologies include innovative systems for measuring glucose levels through sweat 

analysis (Figure 3c) [18,67]. Stretchable sweat sensors represent a novel approach to glucose monitoring, 

leveraging the biochemical relationship between sweat and blood glucose levels (Figure 3c). These devices 

incorporate advanced materials and microfluidic technologies to create flexible, comfortable monitoring solutions 

that integrate seamlessly into daily life. The development of these sensors focuses on achieving accurate, 

continuous monitoring while maintaining user comfort and device durability [68]. 

 

Figure 3. Wearable devices for direct glucose monitoring. (a) CGM systems directly measure blood glucose 

levels using sensors inserted beneath the skin. These systems continuously track glucose levels and transmit the 

data to connected devices for real-time monitoring. CGM: continuous glucose monitoring. (b) Smartwatches are 

equipped with sensors based on various principles to directly measure blood glucose levels. (c) Similarly, skin 
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patches can detect glucose levels in sweat, utilizing different sensor technologies to provide non-invasive glucose 

monitoring. 

Currently, non-invasive methods such as smartwatch-based and sweat-based glucose monitoring continue to 

gain attention from both researchers and users. These alternative technologies offer several potential advantages, 

including reduced physical discomfort, improved user compliance, and potentially lower long-term costs [19]. 

However, significant challenges remain in achieving accuracy and reliability comparable to established CGM 

systems [69]. 

6. Integration of Wearable Devices and AI 

AI has emerged as a transformative force in diabetes management, offering sophisticated tools for glucose 

prediction and personalized therapy optimization. The integration of wearable devices with AI-driven algorithms 

creates a powerful platform capable of delivering real-time insights, improving glycemic control, and enhancing 

overall disease management outcomes [70]. 

AI technologies, such as machine learning (ML) and deep learning algorithms, have effectively predicted 

glucose fluctuations based on diverse physiological inputs. These algorithms analyze historical glucose data, meal 

timing, activity levels, and other contextual factors to forecast glycemic trends [39,71]. This predictive capability 

enables proactive interventions, such as insulin dosing or dietary adjustments, reducing the risk of hypoglycemia 

and hyperglycemia [37]. 

Wearable devices can generate much data on glucose levels, physical activity, heart rate, sleep, and 

food/medication log data. When integrated with AI systems, these data streams are transformed into actionable 

insights [72,73]. For instance, CGM data combined with AI can detect patterns and provide early warnings for 

glucose dysregulation, allowing users to adjust behaviour or therapy [59]. 

Combining wearable devices and AI has revolutionized diabetes monitoring by delivering personalized, 

adaptive care solutions. For example: 

Real-time feedback: AI algorithms analyze wearable data to provide real-time feedback on glucose trends 

and suggest behavioral or therapeutic modifications [74,75]. 

Predictive insights: AI systems predict glucose excursions based on historical and contextual data, helping 

users prevent adverse events. 

Automated decision support: Integrated AI systems support decision-making by recommending insulin 

doses, meal adjustments, or activity changes, reducing the cognitive burden on patients [76]. 

In conclusion, integrating wearable devices and AI represents a paradigm shift in diabetes management. By 

harnessing the power of real-time data and predictive analytics, these systems promise to transform patient care, 

offering a future of more precise, personalized, and effective diabetes management solutions. 

7. Integration of Wearable Devices with Omics Data 

Integrating wearable devices with omics data (genomics, proteomics, metabolomics, and the gut microbiome) 

offers a revolutionary approach to diabetes management. By combining physiological data from wearable devices 

with molecular insights, this paradigm enables a comprehensive and personalized understanding of glucose 

metabolism and overall health [77]. This integration can provide personalized precision diagnosis and treatment 

by identifying patient-specific glucose regulation pathways and biomarkers associated with diabetes complications 

[78]. For example, integrating CGM data with metabolomics profiles may reveal biomarkers for early diabetic 

complications, while microbiome analyses combined with dietary intake data from wearable devices can predict 

glucose responses to specific foods [79,80]. AI algorithms, such as machine learning and deep learning, play a 

pivotal role in this integration. For instance, supervised learning models like random forests and support vector 

machines have been utilized to correlate multi-omics data with glucose variability, enabling personalized dietary 

or pharmacological recommendations [81,82]. Additionally, deep learning frameworks, such as convolutional 

neural networks (CNNs), can process high-dimensional omics data to identify complex interactions between 

physiological and molecular parameters [83]. Genetic background plays a significant role in glucose metabolism 

and the development of diabetes [84]. Advances in genomics have identified numerous genetic variants associated 

with insulin resistance, beta-cell dysfunction, and other diabetes-related traits [85]. By integrating genetic data 

with wearable devices, researchers and clinicians can predict individual responses to food/medication intake and 

physical activity, tailoring diabetes interventions to each patient’s genetic profile [86]. 

The gut microbiome influences glucose regulation and metabolic health, with dysbiosis linked to insulin 

resistance and inflammation [87]. Wearable devices can track food/medication intake, physical activity, and 
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glucose levels, while microbiome analyses provide insights into how these factors interact with gut health. For 

instance, machine learning models integrating microbiome data with wearable device metrics can predict glucose 

responses to specific meals, enabling personalized food recommendations [78]. 

Proteomics and metabolomics reveal real-time biochemical changes in response to physiological and 

environmental factors. By integrating data from wearable devices, such as CGMs or sweat sensors, with 

metabolomic profiles, clinicians can track dynamic glucose regulation pathways and identify biomarkers for early 

diabetes complications [88]. This approach supports predictive modeling and therapeutic optimization [89]. 

In conclusion, combining wearable device data with omics insights represents a pivotal advancement in 

diabetes management. This integrative approach holds the promise of enabling precision medicine, fostering 

proactive care, and improving outcomes for individuals living with diabetes. 

8. Limitations of Current Wearable Devices 

Despite the significant advancements in wearable technologies for glucose monitoring and diabetes 

management, several limitations hinder their universal adoption and efficacy (Figure 4a). These challenges span 

various aspects, including invasiveness, accuracy, usability, and cost. 

Invasiveness and user comfort: CGM systems, though revolutionary, often require minimally invasive 

methods such as subcutaneous sensor placement. Users may experience discomfort, skin irritation, or allergic 

reactions [16,90]. This invasiveness can deter long-term adherence and limit the usability of CGM devices for 

some individuals [91]. 

Accuracy and reliability: Non-invasive devices like smartwatches and sweat-based glucose monitors face 

challenges in achieving the accuracy of invasive systems. Environmental factors such as temperature, humidity, 

and sweat composition can affect measurements [19,92]. For example, sweat-based glucose sensors might not 

consistently correlate with blood glucose levels, leading to discrepancies and potential mismanagement [68]. 

Smartwatches that estimate glucose using optical sensors or bioimpedance also struggle with accuracy, as 

individual skin properties and external light conditions influence these methods [93]. 

Expense and accessibility: Many wearable devices, especially CGMs and advanced smartwatches, are cost-

prohibitive for a large segment of the population [94]. The high upfront cost of devices, coupled with recurring 

expenses for sensors and maintenance, creates barriers to access [60]. In low-income and middle-income countries, 

this issue is exacerbated by limited healthcare coverage and infrastructure [46]. 

User behavior and engagement: User compliance is a critical limitation for wearable devices that require 

active input, such as smartphones, for logging food and medication intake. Forgetting to capture images of meals 

or record medication usage is common, reducing the effectiveness of these tools [95,96]. Additionally, cultural 

practices can complicate accurate data collection. For instance, in cultures where meals are often shared, such as 

in Chinese family or communal dining settings, it is challenging to determine individual food consumption from 

shared dishes. Even when images of meals are taken, the portions consumed by the individual remain unclear, 

leading to potential errors in dietary analysis [97]. 

Integration challenges: Integrating data from multiple wearable devices remains a technical and logistical 

challenge. For example, combining data from CGMs, activity monitors, and food logs into a cohesive system often 

requires third-party platforms. These integrations may not always function seamlessly, leading to fragmented 

insights and reduced utility [98]. 

In conclusion, while wearable devices have significantly advanced diabetes management, overcoming their 

current limitations is crucial for their widespread and equitable use. Future innovations must prioritize user comfort, 

accuracy, affordability, and cultural adaptability to achieve their full potential in diabetes care. 

9. Future Perspectives 

Integrating wearable technologies, AI, and multi-source data holds unprecedented promise for transforming 

diabetes management. Emerging tools, such as smart glasses, advanced AI models including large language 

models (LLMs), and seamless data fusion from multiple devices, are poised to enable a new era of precision 

glucose monitoring and personalized care. 

Comprehensive data integration for glucose and diabetes biomarkers: Current wearable technologies 

primarily focus on glucose monitoring and related physiological parameters. Future systems should integrate 

additional diabetes biomarkers such as insulin levels, ketones, and inflammatory markers, creating a 

comprehensive profile of an individual’s metabolic state. By combining data from multiple sources, including 

smart glasses, smartphones, and smartwatches, these platforms can offer an unparalleled understanding of the 

complex interactions affecting glucose dynamics [89]. 
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Smart glasses for food and medication monitoring: Smart glasses are becoming increasingly accessible 

and functional, with the capability to record high-resolution videos of food and medication intake [99]. When 

coupled with AI, these devices can autonomously detect the initiation of eating or medication intake, triggering 

automatic recording without user intervention. This capability ensures comprehensive tracking of dietary habits 

and medication adherence. However, limited battery life, around 3–4 h for many models, remains a challenge for 

long-term usability [100]. Future solutions could include higher-capacity batteries, energy-efficient hardware, and 

modular designs for battery swaps or external power integration, enhancing the practicality of smart glasses for 

continuous monitoring [70,94]. The AI can analyze video data to identify the types and quantities of food intake, 

considering contextual factors like shared meals or leftovers, which are particularly relevant in communal dining 

cultures (Figure 4b). 

AI and LLM integration in wearable ecosystems: Including AI and LLMs enhances the capability of 

wearable devices to analyze complex, multi-modal datasets. These models can: 

1. Real-time glucose estimation: Integrate data from smart glasses, wearables, and environmental sensors to 

estimate glucose levels dynamically and with high accuracy. 

2. Personalized food recommendations: Provide tailored dietary guidance based on historical data, real-time 

analysis, and predictive modeling. 

3. Immediate warnings: Alert users to potential adverse glucose responses to specific foods or activities, 

supporting informed decision-making [59]. For example, smart glasses integrated with LLMs can recognize 

a meal’s composition from video input, calculate its macronutrient and glycemic load, and cross-reference 

this information with the user’s glucose trends to provide personalized feedback in real-time. 

Seamless integration of devices: Future systems will integrate data from multiple wearable devices, 

including smart glasses, smartphones, and smartwatches, creating a unified platform for real-time monitoring and 

analysis. These devices can collectively track food and medication intake, physical activity, heart rate, body 

temperature, and sleep patterns, offering a holistic view of an individual’s health (Figure 4c). 

Real-time analytics and decision support: The combination of wearable data and AI enables systems that 

not only monitor but also predict glucose fluctuations. 

Integrating smart glasses, wearable devices, and AI represents a paradigm shift in diabetes management. By 

combining diverse data streams with powerful analytics, these systems have the potential to deliver unprecedented 

levels of personalization and precision in care. With continued advancements, wearable ecosystems will not only 

monitor and predict glucose trends but also empower individuals with the tools and insights needed to manage 

their diabetes more effectively and proactively (Figure 4d). This vision promises to improve the quality of life and 

health outcomes for millions of individuals with diabetes worldwide. 

 

Figure 4. Future perspectives in glucose monitoring and diabetes management. (a) Limitations of current 

CGM systems, including invasiveness and cost, highlight the need for alternative solutions. CGM: continuous 

https://www.zotero.org/google-docs/?vFB3xK
https://www.zotero.org/google-docs/?8fR5n9
https://www.zotero.org/google-docs/?XFlPqk
https://www.zotero.org/google-docs/?dQFJtQ
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glucose monitoring. (b) Smart glasses represent a promising tool for the quantification and qualification of food 

and medication intake, providing a novel approach to monitor dietary and medication habits. (c) By integrating data 

from various wearable devices, including physical activity, sleep, food, and medication tracking, a comprehensive 

non-invasive glucose monitoring system can be developed. (d) Such a non-invasive glucose monitoring system 

holds significant potential for future diabetes management, enabling real-time, dynamic, and personalized care. 
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