Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
CRISPR-Cas System: Novel Experimental Therapeutic and Diagnostic Approaches for Chronic Liver Diseases
Teja Naveen Sata and Senthil Kumar Venugopal *
Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
* Correspondence: drsenthil@sau.ac.in; Tel.: +91-1135656620; Fax: +91-1124122511
Received: 7 February 2025; Accepted: 26 February 2025; Published: 8 April 2025
Abstract: Chronic liver disease (CLD), a significant ailment, contributes to nearly two million deaths annually. CLD can be caused by alcohol consumption, fat, viral infections, and genetic disorders. Accurate diagnosis and application of therapeutics are crucial strategies for enhancing the management of CLD. The CRISPR-Cas system, originally a prokaryotic innate immunity mechanism, has evolved into a current-generation tool for therapeutic and diagnostic applications. The cis-cleavage feature of the CRISPR-Cas system involves crRNA-guided specific target cleavage. This mechanism is utilized for the development of therapeutics. Few CRISPR-Cas systems possess the additional feature of trans-cleavage, which is non-specific cleavage, also known as collateral cleavage. This unique feature can be exploited to generate diagnostics. In viral hepatitis, CRIPSR-Cas systems have been concurrently applied and reported for viral genome-targeted therapeutics and detection systems. Research on alcoholic and non-alcoholic fatty diseases mainly focuses on CRISPR-Cas therapeutics targeting disease progression factors. Also, CRISPR-Cas-based gene editing can be used to manage genetic disorders. In hepatocellular carcinoma, CRISPR-Cas systems are used for oncogene-targeted therapies and biomarker diagnostics. Various viral and non-viral delivery systems for CRISPR-Cas are been proposed for developing therapeutic applications. Despite limited progress, CRISPR-Cas systems have significant potential for broader application in CLD. This review describes the comprehensive use of the CRISPR-Cas system in experimental therapeutic and diagnostic approaches for CLD.
Keywords:
CRISPR Chronic liver disease therapeutics diagnostics Cas9 Cas12 Cas13References
- Kalra, A.; Yetiskul, E.; Wehrle, C.J.; et al. Physiology, Liver. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025.
- Sharma, A.; Nagalli, S. Chronic Liver Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025.
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; et al. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. https://doi.org/10.1002/hep.28431.
- Pickar-Oliver, A.; Gersbach, C.A. The next Generation of CRISPR-Cas Technologies and Applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. https://doi.org/10.1038/s41580-019-0131-5.
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage Resistance Mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. https://doi.org/10.1038/nrmicro2315.
- Jansen, R.; van Embden, J.D.A.; Gaastra, W.; et al. Identification of Genes That Are Associated with DNA Repeats in Prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x.
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; et al. Evolutionary Classification of CRISPR–Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020, 18, 67–83. https://doi.org/10.1038/s41579-019-0299-x.
- Charpentier, E.; Richter, H.; van der Oost, J.; et al. Biogenesis Pathways of RNA Guides in Archaeal and Bacterial CRISPR-Cas Adaptive Immunity. FEMS Microbiol. Rev. 2015, 39, 428–441. https://doi.org/10.1093/femsre/fuv023.
- van der Oost, J.; Jore, M.M.; Westra, E.R.; et al. CRISPR-Based Adaptive and Heritable Immunity in Prokaryotes. Trends Biochem. Sci. 2009, 34, 401–407. https://doi.org/10.1016/j.tibs.2009.05.002.
- Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; et al. Short Motif Sequences Determine the Targets of the Prokaryotic CRISPR Defence System. Microbiology 2009, 155, 733–740. https://doi.org/10.1099/mic.0.023960-0.
- Wright, A.V.; Nuñez, J.K.; Doudna, J.A. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell 2016, 164, 29–44. https://doi.org/10.1016/j.cell.2015.12.035.
- Jiang, W.; Marraffini, L.A. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annu. Rev. Microbiol. 2015, 69, 209–228. https://doi.org/10.1146/annurev-micro-091014-104441.
- Tao, J.; Bauer, D.E.; Chiarle, R. Assessing and Advancing the Safety of CRISPR-Cas Tools: From DNA to RNA Editing. Nat. Commun. 2023, 14, 212. https://doi.org/10.1038/s41467-023-35886-6.
- Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021, 15, 353–361. https://doi.org/10.2147/BTT.S326422.
- Paul, B.; Montoya, G. CRISPR-Cas12a: Functional Overview and Applications. Biomed. J. 2020, 43, 8–17. https://doi.org/10.1016/j.bj.2019.10.005.
- Liu, L.; Li, X.; Ma, J.; et al. The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell 2017, 170, 714–726.e10. https://doi.org/10.1016/j.cell.2017.06.050.
- Cannan, W.J.; Pederson, D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell Physiol. 2016, 231, 3–14. https://doi.org/10.1002/jcp.25048.
- Feng, W.; Zhang, H.; Le, X.C. Signal Amplification by the Trans-Cleavage Activity of CRISPR-Cas Systems: Kinetics and Performance. Anal. Chem. 2023, 95, 206–217. https://doi.org/10.1021/acs.analchem.2c04555.
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; et al. RNA Targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. https://doi.org/10.1038/nature24049.
- Weng, Z.; You, Z.; Yang, J.; et al. CRISPR-Cas Biochemistry and CRISPR-Based Molecular Diagnostics. Angew. Chem. Int. Ed. 2023, 62, e202214987. https://doi.org/10.1002/anie.202214987.
- Glökler, J.; Lim, T.S.; Ida, J.; et al. Isothermal Amplifications—A Comprehensive Review on Current Methods. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 543–586. https://doi.org/10.1080/10409238.2021.1937927.
- Castaneda, D.; Gonzalez, A.J.; Alomari, M.; et al. From Hepatitis A to E: A Critical Review of Viral Hepatitis. World J. Gastroenterol. 2021, 27, 1691–1715. https://doi.org/10.3748/wjg.v27.i16.1691.
- Bartosh, U.I.; Dome, A.S.; Zhukova, N.V.; et al. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int. J. Mol. Sci. 2023, 25, 334. https://doi.org/10.3390/ijms25010334.
- Lin, S.-R.; Yang, H.-C.; Kuo, Y.-T.; et al. The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Mol. Ther. Nucleic Acids 2014, 3, e186. https://doi.org/10.1038/mtna.2014.38.
- Seeger, C.; Sohn, J.A. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol. Ther. Nucleic Acids 2014, 3, e216. https://doi.org/10.1038/mtna.2014.68.
- Kennedy, E.M.; Bassit, L.C.; Mueller, H.; et al. Suppression of Hepatitis B Virus DNA Accumulation in Chronically Infected Cells Using a Bacterial CRISPR/Cas RNA-Guided DNA Endonuclease. Virology 2015, 476, 196–205. https://doi.org/10.1016/j.virol.2014.12.001.
- Sakuma, T.; Masaki, K.; Abe-Chayama, H.; et al. Highly Multiplexed CRISPR-Cas9-Nuclease and Cas9-Nickase Vectors for Inactivation of Hepatitis B Virus. Genes. Cells 2016, 21, 1253–1262. https://doi.org/10.1111/gtc.12437.
- Schiwon, M.; Ehrke-Schulz, E.; Oswald, A.; et al. One-Vector System for Multiplexed CRISPR/Cas9 against Hepatitis B Virus cccDNA Utilizing High-Capacity Adenoviral Vectors. Mol. Ther. Nucleic Acids 2018, 12, 242–253. https://doi.org/10.1016/j.omtn.2018.05.006.
- Kennedy, E.M.; Kornepati, A.V.R.; Cullen, B.R. Targeting Hepatitis B Virus cccDNA Using CRISPR/Cas9. Antivir. Res. 2015, 123, 188–192. https://doi.org/10.1016/j.antiviral.2015.10.004.
- Li, H.; Sheng, C.; Wang, S.; et al. Removal of Integrated Hepatitis B Virus DNA Using CRISPR-Cas9. Front. Cell Infect. Microbiol. 2017, 7, 91. https://doi.org/10.3389/fcimb.2017.00091.
- Ely, A.; Moyo, B.; Arbuthnot, P. Progress with Developing Use of Gene Editing to Cure Chronic Infection with Hepatitis B Virus. Mol. Ther. 2016, 24, 671–677. https://doi.org/10.1038/mt.2016.43.
- Yang, H.-C.; Chen, P.-J. The Potential and Challenges of CRISPR-Cas in Eradication of Hepatitis B Virus Covalently Closed Circular DNA. Virus Res. 2018, 244, 304–310. https://doi.org/10.1016/j.virusres.2017.06.010.
- Kurihara, T.; Fukuhara, T.; Ono, C.; et al. Suppression of HBV Replication by the Expression of Nickase- and Nuclease Dead-Cas9. Sci. Rep. 2017, 7, 6122. https://doi.org/10.1038/s41598-017-05905-w.
- Yang, Y.-C.; Chen, Y.-H.; Kao, J.-H.; et al. Permanent Inactivation of HBV Genomes by CRISPR/Cas9-Mediated Non-Cleavage Base Editing. Mol. Ther. Nucleic Acids 2020, 20, 480–490. https://doi.org/10.1016/j.omtn.2020.03.005.
- McCoullough, L.C.; Fareh, M.; Hu, W.; et al. CRISPR-Cas13b-Mediated Suppression of HBV Replication and Protein Expression. J. Hepatol. 2024, 81, 794–805. https://doi.org/10.1016/j.jhep.2024.05.025.
- Wang, S.; Li, H.; Kou, Z.; et al. Highly Sensitive and Specific Detection of Hepatitis B Virus DNA and Drug Resistance Mutations Utilizing the PCR-Based CRISPR-Cas13a System. Clin. Microbiol. Infect. 2021, 27, 443–450. https://doi.org/10.1016/j.cmi.2020.04.018.
- Zhang, X.; Tian, Y.; Xu, L.; et al. CRISPR/Cas13-Assisted Hepatitis B Virus Covalently Closed Circular DNA Detection. Hepatol. Int. 2022, 16, 306–315. https://doi.org/10.1007/s12072-022-10311-0.
- Tian, Y.; Fan, Z.; Xu, L.; et al. CRISPR/Cas13a-Assisted Rapid and Portable HBV DNA Detection for Low-Level Viremia Patients. Emerg. Microbes Infect. 2023, 12, e2177088. https://doi.org/10.1080/22221751.2023.2177088.
- Wang, T.; Bai, L.; Wang, G.; et al. SATCAS: A CRISPR/Cas13a-Based Simultaneous Amplification and Testing Platform for One-Pot RNA Detection and SNPs Distinguish in Clinical Diagnosis. Biosens. Bioelectron. 2024, 263, 116636. https://doi.org/10.1016/j.bios.2024.116636.
- Ding, R.; Long, J.; Yuan, M.; et al. CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. Int. J. Mol. Sci. 2021, 22, 4842. https://doi.org/10.3390/ijms22094842.
- Li, T.; Wang, J.; Fang, J.; et al. A Universal Nucleic Acid Detection Platform Combing CRISPR/Cas12a and Strand Displacement Amplification with Multiple Signal Readout. Talanta 2024, 273, 125922. https://doi.org/10.1016/j.talanta.2024.125922.
- Zhao, C.; Du, L.; Hu, J.; Hou, X. Recombinase Polymerase Amplification and Target-Triggered CRISPR/Cas12a Assay for Sensitive and Selective Hepatitis B Virus DNA Analysis Based on Lanthanide Tagging and Inductively Coupled Plasma Mass Spectrometric Detection. Anal. Chem. 2024, 96, 15059–15065. https://doi.org/10.1021/acs.analchem.4c03715.
- Wang, J.; Luo, L.; Li, Y.; et al. A Signal On-off Strategy Based on the Digestion of DNA Cubes Assisted by the CRISPR-Cas12a System for Ultrasensitive HBV Detection in Solid-State Nanopores. Analyst 2022, 147, 5623–5632. https://doi.org/10.1039/d2an01402e.
- Kachwala, M.J.; Smith, C.W.; Nandu, N.; et al. Recombinase Amplified CRISPR Enhanced Chain Reaction (RACECAR) for Viral Genome Detection. Nanoscale 2022, 14, 13500–13504. https://doi.org/10.1039/d2nr03590a.
- Choi, J.-H.; Shin, M.; Yang, L.; et al. Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Amplification-Free Detection of Viral DNAs Using Surface-Enhanced Raman Spectroscopy-Active Nanoarray. ACS Nano 2021, 15, 13475–13485. https://doi.org/10.1021/acsnano.1c03975.
- Xu, H.; Lin, G.; Chen, R.; et al. CRISPR/Cas12b Assisted Loop-Mediated Isothermal Amplification for Easy, Rapid and Sensitive Quantification of Chronic HBV DNA in One-Pot. Anal. Chim. Acta 2024, 1310, 342702. https://doi.org/10.1016/j.aca.2024.342702.
- Chen, X.; Tan, Y.; Wang, S.; et al. A CRISPR-Cas12b-Based Platform for Ultrasensitive, Rapid, and Highly Specific Detection of Hepatitis B Virus Genotypes B and C in Clinical Application. Front. Bioeng. Biotechnol. 2021, 9, 743322. https://doi.org/10.3389/fbioe.2021.743322.
- Gong, S.; Zhang, S.; Wang, X.; et al. Strand Displacement Amplification Assisted CRISPR-Cas12a Strategy for Colorimetric Analysis of Viral Nucleic Acid. Anal. Chem. 2021, 93, 15216–15223. https://doi.org/10.1021/acs.analchem.1c04133.
- Tao, Y.; Yi, K.; Wang, H.; et al. CRISPR-Cas12a-Regulated DNA Adsorption and Metallization on MXenes as Enhanced Enzyme Mimics for Sensitive Colorimetric Detection of Hepatitis B Virus DNA. J. Colloid. Interface Sci. 2022, 613, 406–414. https://doi.org/10.1016/j.jcis.2022.01.038.
- Fuchs, G.; Petrov, A.N.; Marceau, C.D.; et al. Kinetic Pathway of 40S Ribosomal Subunit Recruitment to Hepatitis C Virus Internal Ribosome Entry Site. Proc. Natl. Acad. Sci. USA 2015, 112, 319–325. https://doi.org/10.1073/pnas.1421328111.
- Hopcraft, S.E.; Evans, M.J. Selection of a Hepatitis C Virus with Altered Entry Factor Requirements Reveals a Genetic Interaction between the E1 Glycoprotein and Claudins. Hepatology 2015, 62, 1059–1069. https://doi.org/10.1002/hep.27815.
- Price, A.A.; Sampson, T.R.; Ratner, H.K.; et al. Cas9-Mediated Targeting of Viral RNA in Eukaryotic Cells. Proc. Natl. Acad. Sci. USA 2015, 112, 6164–6169. https://doi.org/10.1073/pnas.1422340112.
- Ashraf, M.U.; Salman, H.M.; Khalid, M.F.; et al. CRISPR-Cas13a Mediated Targeting of Hepatitis C Virus Internal-Ribosomal Entry Site (IRES) as an Effective Antiviral Strategy. Biomed. Pharmacother. 2021, 136, 111239. https://doi.org/10.1016/j.biopha.2021.111239.
- Kham-Kjing, N.; Ngo-Giang-Huong, N.; Tragoolpua, K.; et al. Highly Specific and Rapid Detection of Hepatitis C Virus Using RT-LAMP-Coupled CRISPR-Cas12 Assay. Diagn. 2022, 12, 1524. https://doi.org/10.3390/diagnostics12071524.
- Wei, X.; Shen, Y.; Yuan, M.; et al. Visualizing In-Field Detection of HCV Using a One-Pot RT-RAA-CRISPR/Cas12a Platform. Anal. Methods 2024, 16, 7484–7493. https://doi.org/10.1039/d4ay01253d.
- Nguyen, L.T.; Rananaware, S.R.; Yang, L.G.; et al. Engineering Highly Thermostable Cas12b via de Novo Structural Analyses for One-Pot Detection of Nucleic Acids. Cell Rep. Med. 2023, 4, 101037. https://doi.org/10.1016/j.xcrm.2023.101037.
- Li, J.; Tang, L.; Li, T.; et al. Tandem Cas13a/crRNA-Mediated CRISPR-FET Biosensor: A One-for-All Check Station for Virus without Amplification. ACS Sens. 2022, 7, 2680–2690. https://doi.org/10.1021/acssensors.2c01200.
- Shahni, S.N.; Albogami, S.; Azmi, I.; et al. Dual Detection of Hepatitis B and C Viruses Using CRISPR-Cas Systems and Lateral Flow Assay. J. Nucleic Acids 2024, 2024, 8819834. https://doi.org/10.1155/2024/8819834.
- Tian, Y.; Fan, Z.; Zhang, X.; et al. CRISPR/Cas13a-Assisted Accurate and Portable Hepatitis D Virus RNA Detection. Emerg. Microbes Infect. 2023, 12, 2276337. https://doi.org/10.1080/22221751.2023.2276337.
- Li, M.; He, Q.; Li, T.; et al. Development and Evaluation of a CRISPR-Cas13a System-Based Diagnostic for Hepatitis E Virus. Clin. Chem. Lab. Med. 2024, 62, 1237–1247. https://doi.org/10.1515/cclm-2023-1007.
- Fan, Z.; Xu, L.; Cao, Y.; et al. One-Pot Assay Based on CRISPR/Cas13a Technology for HEV RNA Point-of-Care Testing. J. Med. Virol. 2024, 96, e70115. https://doi.org/10.1002/jmv.70115.
- Rehm, J.; Taylor, B.; Mohapatra, S.; et al. Alcohol as a Risk Factor for Liver Cirrhosis: A Systematic Review and Meta-Analysis. Drug Alcohol. Rev. 2010, 29, 437–445. https://doi.org/10.1111/j.1465-3362.2009.00153.x.
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; et al. Alcoholic Liver Disease. Nat. Rev. Dis. Primers 2018, 4, 16. https://doi.org/10.1038/s41572-018-0014-7.
- Zhang, Y.; Sun, Y.; Zhang, Y.; et al. Nuclear Factor Y Participates in Alcoholic Liver Disease by Activating SREBP1 Expression in Mice. Biochem. Biophys. Res. Commun. 2021, 541, 90–94. https://doi.org/10.1016/j.bbrc.2021.01.011.
- Chen, N.; Luo, J.; Zhou, T.; et al. Lysine β-Hydroxybutyrylation Promotes Lipid Accumulation in Alcoholic Liver Disease. Biochem. Pharmacol. 2024, 228, 115936. https://doi.org/10.1016/j.bcp.2023.115936.
- Floris, A.; Chandla, S.; Lim, Y.; et al. Sumoylation of Methionine Adenosyltransferase Alpha 1 Promotes Mitochondrial Dysfunction in Alcohol-Associated Liver Disease. Hepatology 2024, 80, 102–118. https://doi.org/10.1097/HEP.0000000000000717.
- de Alwis, N.M.W.; Day, C.P. Non-Alcoholic Fatty Liver Disease: The Mist Gradually Clears. J. Hepatol. 2008, 48, S104–S112. https://doi.org/10.1016/j.jhep.2008.01.009.
- Hardy, T.; Oakley, F.; Anstee, Q.M.; et al. Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum. Annu. Rev. Pathol. 2016, 11, 451–496. https://doi.org/10.1146/annurev-pathol-012615-044224.
- Yu, Q.; Tan, R.-Z.; Gan, Q.; et al. A Novel Rat Model of Nonalcoholic Fatty Liver Disease Constructed Through CRISPR/Cas-Based Hydrodynamic Injection. Mol. Biotechnol. 2017, 59, 365–373. https://doi.org/10.1007/s12033-017-0025-8.
- Wang, D.; Mou, H.; Li, S.; et al. Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Hum. Gene Ther. 2015, 26, 432–442. https://doi.org/10.1089/hum.2015.087.
- Hayat, U.; Siddiqui, A.A.; Farhan, M.L.; et al. Genome Editing and Fatty Liver. Adv. Exp. Med. Biol. 2023, 1396, 191–206. https://doi.org/10.1007/978-981-19-5642-3_13.
- Tsuru, H.; Osaka, M.; Hiraoka, Y.; et al. HFD-Induced Hepatic Lipid Accumulation and Inflammation Are Decreased in Factor D Deficient Mouse. Sci. Rep. 2020, 10, 17593. https://doi.org/10.1038/s41598-020-74617-5.
- Wei, Y.; Tian, C.; Zhao, Y.; et al. MRG15 Orchestrates Rhythmic Epigenomic Remodelling and Controls Hepatic Lipid Metabolism. Nat. Metab. 2020, 2, 447–460. https://doi.org/10.1038/s42255-020-0203-z.
- Grove, J.I.; Lo, P.C.K.; Shrine, N.; et al. Identification and Characterisation of a Rare MTTP Variant Underlying Hereditary Non-Alcoholic Fatty Liver Disease. JHEP Rep. 2023, 5, 100764. https://doi.org/10.1016/j.jhepr.2023.100764.
- Li, L.; Guo, C.; Yu, Y.; et al. Differential Effects of PGAM5 Knockout on High Fat High Fructose Diet and Methionine Choline-Deficient Diet Induced Non-Alcoholic Steatohepatitis (NASH) in Mice. Cell Biosci. 2023, 13, 154. https://doi.org/10.1186/s13578-023-01095-3.
- Wang, Y.; Bo, J.; Zhao, Z.; et al. Depletion of Igfbp7 Alleviates Zebrafish NAFLD Progression through Inhibiting Hepatic Ferroptosis. Life Sci. 2023, 332, 122086. https://doi.org/10.1016/j.lfs.2023.122086.
- Lopez-Yus, M.; Frendo-Cumbo, S.; Del Moral-Bergos, R.; et al. CRISPR/Cas9-Mediated Deletion of Adipocyte Genes Associated with NAFLD Alters Adipocyte Lipid Handling and Reduces Steatosis in Hepatocytes in Vitro. Am. J. Physiol. Cell Physiol. 2023, 325, C1178–C1189. https://doi.org/10.1152/ajpcell.00291.2023.
- Leeson-Payne, A.; Iyinikkel, J.; Malcolm, C.; et al. Loss of GPR75 Protects against Non-Alcoholic Fatty Liver Disease and Body Fat Accumulation. Cell Metab. 2024, 36, 1076–1087.e4. https://doi.org/10.1016/j.cmet.2024.03.016.
- Hossain, M.M.; Mishra, A.K.; Yadav, A.K.; et al. MicroRNA-122 Regulates Inflammatory and Autophagic Proteins by Downregulating Pyruvate Kinase M2 in Non-Alcoholic Fatty Liver Disease. Mol. Cell Biochem. 2024. https://doi.org/10.1007/s11010-024-05174-y.
- Li, S.; Chen, F.; Liu, M.; et al. Knockdown of Hepatic Mitochondrial Calcium Uniporter Mitigates MASH and Fibrosis in Mice. Cell Biosci. 2024, 14, 135. https://doi.org/10.1186/s13578-024-01315-4.
- Konkwo, C.; Chowdhury, S.; Vilarinho, S. Genetics of Liver Disease in Adults. Hepatol. Commun. 2024, 8, e0408. https://doi.org/10.1097/HC9.0000000000000408.
- Bjursell, M.; Porritt, M.J.; Ericson, E.; et al. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates Α1-Antitrypsin Deficiency Phenotype. EBioMedicine 2018, 29, 104–111. https://doi.org/10.1016/j.ebiom.2018.02.015.
- Shen, S.; Sanchez, M.E.; Blomenkamp, K.; et al. Amelioration of Alpha-1 Antitrypsin Deficiency Diseases with Genome Editing in Transgenic Mice. Hum. Gene Ther. 2018, 29, 861–873. https://doi.org/10.1089/hum.2017.227.
- Ji, Q.; Guo, C.; Xie, C.; et al. Genetically Engineered Cell Lines for Α1-Antitrypsin Expression. Biotechnol. Lett. 2017, 39, 1471–1476. https://doi.org/10.1007/s10529-017-2391-5.
- Stephens, C.J.; Kashentseva, E.; Everett, W.; et al. Targeted in Vivo Knock-in of Human Alpha-1-Antitrypsin cDNA Using Adenoviral Delivery of CRISPR/Cas9. Gene Ther. 2018, 25, 139–156. https://doi.org/10.1038/s41434-018-0003-1.
- Song, C.-Q.; Wang, D.; Jiang, T.; et al. In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency. Hum. Gene Ther. 2018, 29, 853–860. https://doi.org/10.1089/hum.2017.225.
- D’Antiga, L.; Beuers, U.; Ronzitti, G.; et al. Gene Therapy in Patients with the Crigler–Najjar Syndrome. N. Engl. J. Med. 2023, 389, 620–631. https://doi.org/10.1056/NEJMoa2214084.
- Bortolussi, G.; Iaconcig, A.; Canarutto, G.; et al. CRISPR-Cas9-Mediated Somatic Correction of a One-Base Deletion in the Ugt1a Gene Ameliorates Hyperbilirubinemia in Crigler-Najjar Syndrome Mice. Mol. Ther. Methods Clin. Dev. 2023, 31, 101161. https://doi.org/10.1016/j.omtm.2023.101161.
- St-Louis, M.; Tanguay, R.M. Mutations in the Fumarylacetoacetate Hydrolase Gene Causing Hereditary Tyrosinemia Type I: Overview. Hum. Mutat. 1997, 9, 291–299. https://doi.org/10.1002/(SICI)1098-1004(1997)9:4<291::AID-HUMU1>3.0.CO;2-9.
- Li, N.; Gou, S.; Wang, J.; et al. CRISPR/Cas9-Mediated Gene Correction in Newborn Rabbits with Hereditary Tyrosinemia Type I. Mol. Ther. 2021, 29, 1001–1015. https://doi.org/10.1016/j.ymthe.2020.11.023.
- Jiang, W.; Liu, L.; Chang, Q.; et al. Production of Wilson Disease Model Rabbits with Homology-Directed Precision Point Mutations in the ATP7B Gene Using the CRISPR/Cas9 System. Sci. Rep. 2018, 8, 1332. https://doi.org/10.1038/s41598-018-19774-4.
- Pöhler, M.; Guttmann, S.; Nadzemova, O.; et al. CRISPR/Cas9-Mediated Correction of Mutated Copper Transporter ATP7B. PLoS ONE 2020, 15, e0239411. https://doi.org/10.1371/journal.pone.0239411.
- Wei, R.; Yang, J.; Cheng, C.-W.; et al. CRISPR-Targeted Genome Editing of Human Induced Pluripotent Stem Cell-Derived Hepatocytes for the Treatment of Wilson’s Disease. JHEP Rep. 2022, 4, 100389. https://doi.org/10.1016/j.jhepr.2021.100389.
- Wu, X.; Ma, W.; Mei, C.; et al. Description of CRISPR/Cas9 Development and Its Prospect in Hepatocellular Carcinoma Treatment. J. Exp. Clin. Cancer Res. 2020, 39, 97. https://doi.org/10.1186/s13046-020-01603-0.
- Yu, S.; Zhao, R.; Zhang, B.; et al. Research Progress and Application of the CRISPR/Cas9 Gene-Editing Technology Based on Hepatocellular Carcinoma. Asian J. Pharm. Sci. 2023, 18, 100828. https://doi.org/10.1016/j.ajps.2023.100828.
- Amjad, E.; Pezzani, R.; Sokouti, B. A Review of the Literature on the Use of CRISPR/Cas9 Gene Therapy to Treat Hepatocellular Carcinoma. Oncol. Res. 2024, 32, 439–461. https://doi.org/10.32604/or.2023.044473.
- Kim, S.-Y.; Ong, Q.; Liao, Y.; et al. Genetic Ablation of LAT1 Inhibits Growth of Liver Cancer Cells and Downregulates mTORC1 Signaling. Int. J. Mol. Sci. 2023, 24, 9171. https://doi.org/10.3390/ijms24119171.
- Lin, Y.; Zhong, W.; Lin, Q.; et al. SFPQ Promotes the Proliferation, Migration and Invasion of Hepatocellular Carcinoma Cells and Is Associated with Poor Prognosis. Am. J. Cancer Res. 2023, 13, 2269–2284.
- Wan, F.; Li, H.; Huang, S.; et al. Vasorin Promotes Proliferation and Migration via STAT3 Signaling and Acts as a Promising Therapeutic Target of Hepatocellular Carcinoma. Cell Signal 2023, 110, 110809. https://doi.org/10.1016/j.cellsig.2023.110809.
- Wang, F.; Gao, Y.; Xue, S.; et al. SCARB2 Drives Hepatocellular Carcinoma Tumor Initiating Cells via Enhanced MYC Transcriptional Activity. Nat. Commun. 2023, 14, 5917. https://doi.org/10.1038/s41467-023-41593-z.
- Zhang, Y.; Zhang, Y.; Tao, H.; et al. Targeting LINC01607 Sensitizes Hepatocellular Carcinoma to Lenvatinib via Suppressing Mitophagy. Cancer Lett. 2023, 576, 216405. https://doi.org/10.1016/j.canlet.2023.216405.
- Shi, X.; Zhang, Y.; Wang, Y.; et al. The tRNA Gm18 Methyltransferase TARBP1 Promotes Hepatocellular Carcinoma Progression via Metabolic Reprogramming of Glutamine. Cell Death Differ. 2024, 31, 1219–1234. https://doi.org/10.1038/s41418-024-01323-4.
- Xiao, X.; Lin, X.; Ting, C.L.; et al. Extraction-Free, Immuno-RPA-CRISPR/Cas13a-Based One-Pot Detection of Glypican-3 Directly from Extracellular Vesicles. Anal. Chim. Acta 2024, 1297, 342385. https://doi.org/10.1016/j.aca.2024.342385.
- Luo, B.; Zhou, J.; Zhan, X.; et al. Visual and Colorimetric Detection of microRNA in Clinical Samples Based on Strand Displacement Amplification and Nanozyme-Mediated CRISPR-Cas12a System. Talanta 2024, 277, 126310. https://doi.org/10.1016/j.talanta.2024.126310.
- Huang, K.; Zapata, D.; Tang, Y.; et al. In Vivo Delivery of CRISPR-Cas9 Genome Editing Components for Therapeutic Applications. Biomaterials 2022, 291, 121876. https://doi.org/10.1016/j.biomaterials.2022.121876.
- Chadwick, A.C.; Wang, X.; Musunuru, K. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1741–1747. https://doi.org/10.1161/ATVBAHA.117.309881.
- Mangeot, P.E.; Risson, V.; Fusil, F.; et al. Genome Editing in Primary Cells and in Vivo Using Viral-Derived Nanoblades Loaded with Cas9-sgRNA Ribonucleoproteins. Nat. Commun. 2019, 10, 45. https://doi.org/10.1038/s41467-018-07845-z.
- Banskota, S.; Raguram, A.; Suh, S.; et al. Engineered Virus-like Particles for Efficient in Vivo Delivery of Therapeutic Proteins. Cell 2022, 185, 250–265.e16. https://doi.org/10.1016/j.cell.2021.12.021.
- Haghighi, E.; Abolmaali, S.S.; Dehshahri, A.; et al. Navigating the Intricate In-Vivo Journey of Lipid Nanoparticles Tailored for the Targeted Delivery of RNA Therapeutics: A Quality-by-Design Approach. J. Nanobiotechnol. 2024, 22, 710. https://doi.org/10.1186/s12951-024-02972-w.