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Abstract: The GloVe model is a widely used model for word vector representation learning. The word
vector trained by the model can encode some semantic and syntactic information, and the conventional
GloVe model  trains  the  word  vector  representation  by  collecting  the  context  word  within  a  symmetric
window for a given target word. Obviously, such collection does not obtain the left/right side informa-
tion between the context word and the target word, which is linguistically critical information for learn-
ing  a  word  representation  of  syntactic  information.  Therefore,  the  word  vector  trained  by  the  GloVe
model performs poorly in syntax-based tasks such as the part-of-speech tagging task (abbreviated as the
POS task) and the chunking task. In order to solve this problem, a concatenated vector representation is
proposed with the asymmetric GloVe model, which distinguishes left contexts from right contexts of the
target word and exhibits more syntactic similarity than the original GloVe vector representation in look-
ing for the target word’s neighbor words. By using the syntactic test set, the concatenated vector repre-
sentation performs well for the word analogy task, and the syntax-based tasks such as the POS task and
the chunking task. At the same time, the dimension of the concatenated vector representation is the half
dimension of the original GloVe vector representation, reducing the running time greatly.

Keywords: GloVe model; symmetric window; asymmetric window; concatenated vector representation;
syntax-based tasks

 
 
1. Introduction

In  recent  years,  many pre-training language models  have been proposed in  the  field  of  natural  language pro-
cessing, including the CBOW model, the skip-gram model [1], the GloVe model [2], the Elmo model [3], the Bert
model [4], the GPT model [5−7] and so on. Among them, the GloVe model is effective and easy-to-implement, and
performs well in many downstream tasks such as sentiment classification [8], multilingual retrieval [9], and relation
extraction [10].

The GloVe model is built  based on the global co-occurrence information between any two words. Therefore,
the  learned  word  vector  encodes  the  word’s  semantic  and  syntactic  information,  but  the  syntactic  information
encoded  by  the  GloVe  model  is  less.  The  reason  is  that  the  GloVe  model  does  not  consider  whether  the  context
words are on the left or right side of the target word. The GloVe model has two ways to set a context window. The
first way is to set a symmetric context window, which is a context window that extends to the left and right of a tar-
get word, and the other way is to set an asymmetric context window that extends only to the left of a target word. The
symmetrical  context window is used to sum the frequency of the context before and after  the target  word,  and the
left/right side information is ignored between the context words and the target word, resulting in less syntactic infor-
mation  represented  by  the  word  vector.  The  asymmetric  context  window  preserves  the  left/right  side  information
between the context words and the target word, however, it is unreasonable to sum up the word vector and the con-
text vector (of the target word) as the output vector. This is because the word vector and the context vector are trained
based on the contexts on the left side and right side of a word, respectively. This method will lead to the loss of the
left/right side information between the context words and the target word, as well as the partially loss of the syntactic
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information represented by the word vector.
Specifically, in the following sentence, there is a word “basketball” before and after the word “play”, but only

the word “basketball” in back is the common collocation of the word “play”. The word “basketball” in the front has
no syntactic and semantic relationship with the word “play”. When counting the co-occurrence matrix in the way of
the symmetrical context window of the GloVe model, the frequency of “basketball” before and after “play” will be
summed up, so that the syntactic information of “play” cannot be encoded clearly. When outputting a word vector in
the way of the asymmetrical context window of the GloVe model, the word vector and context vector of the target
word are summed up, but the word vector and the context vector of the target word are trained based on the contexts
on the left side and the right side of the target word, respectively. In this way, the syntactic information of “play” can-
not be encoded clearly. Therefore, it is not effective to use the word vector trained by the GloVe model as the initial
vector for syntax-based tasks.

I like basketball, so I often play basketball.
Word vectors  trained by the GloVe model  are not  very efficient  as  initial  vectors  for  syntax-based tasks.  For

example, the POS task [11] is to mark the corresponding part of each word in a speech. Word vectors that lack syn-
tactic information are not beneficial to correctly determine the part of the speech in the POS task. The chunking task
[12], also known as shallow semantic analysis, divides the text into syntactically related parts, and marks each part of
a sentence with syntactic components such as nouns or verb phrases (NP or VP).  Word vectors that  lack syntactic
information are not beneficial to correctly determine the syntactically related parts in the chunking task. Therefore, it
is necessary to study how to train word vectors to encode syntactic information.

Some studies have been done to improve the syntactic information of the word vector representation by distin-
guishing  the  left  and  right  contexts  of  target  words.  Literature  [13]  has  enlarged  projection  layers  of  both  CBOW
model and skip-gram model to retain the left/right side information between the context words and the target word.
Literature [14] has improved the CBOW model and assigned different weights to the context words based on the type
and the relative position (the distance to the left/right) of the target word. Literature [15] has proposed the DSG (direct
skip-gram) model, where a special direction vector has been introduced to indicate whether the context word is on the
target word’s left or right side. The performance of the above methods has been improved in syntax-based tasks con-
sidering the left/right side information between the context words and the target word.

How to modify the GloVe model so that the word vector trained can reflect more syntactic information? Intu-
itively, concatenating the left and right vectors of words can better reflect the syntactic information of words. There-
fore, the left and right vectors are learned with the half size of the original dimension based on the asymmetric GloVe
model, and concatenated as  the output  word vectors.  Experiments  show that,  on the syntactic  test  set,  the concate-
nated vector representation has better performance for syntax-based tasks including the word analogy task, the POS
task and the chunking task. At the same time, more syntactically similar words can be found through the proposed
word vector representation. Moreover, this method can significantly reduce the running time as only half-dimension
word vectors need to be trained.

The contributions of this paper are as follows:
(1) The construction method of the left-side co-occurrence matrix, right-side co-occurrence matrix and symmet-

ric co-occurrence matrix are given.
(2) It is proved that the target word vector and the context word vector (based on the left co-occurrence matrix

training) encode the information of the left context and right context of the word, respectively.
(3) The concatenated word vector representation is proposed with the asymmetric GloVe model and its training

method. Extensive experiments show the effectiveness of the proposed word vector representation.

2. GloVe model

The GloVe model  [2]  can,  respectively,  train  low-dimensional  word  vectors  with  symmetric  and asymmetric
context windows.

2.1. GloVe Model with Symmetric Context Window

By using the GloVe model, the steps of training a low-dimensional word vector are as follows:

ci
(
1≤ i≤ n

)(1) Count the vocabulary from the corpus and rank the vocabulary according to the frequency of words, where
n is the size of the vocabulary, and  represents the ith word in the vocabulary.

XS

n×n XS
i j

(2) Set the fixed window size as w, traverse the words in the corpus, count the frequency of words in the fixed
windows on both sides of the target words, and generate a symmetric co-occurrence matrix which is expressed as .
The size of the matrix is . Use  to represent the elements of row i and column j of the symmetric co-occur-
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rence matrix.
(3) Shuffle the co-occurrence matrix.

vS

vS
(4) Use  to represent the low-dimensional word vector based on training the symmetric co-occurrence matrix.

The objective function of training  is as follows:

JS =
∑n

i, j=1
f
(
XS

i j

)Ä(
vS

i

)T ṽS
j +bS

i +bS
j − logXS

i j

ä2
(1)

vS
i ci ṽS

j

c j bS
i bS

j vS
i ṽS

j f
xmax

where  is  the  symmetrical  low-dimensional  word vector  of  the  word ,  is  the  symmetrical  low-dimensional
context vector of the word ,  and  are the offset terms corresponding to  and , and  is the weight func-
tion which is defined by formula (2).  and α are hyperparameters set to be 100 and 3/4, respectively, which are
verified as the optimal values via experiments in literature [2].

f (x) =
ß

(x/xmax)α x < 100
1 otherwise (2)

vS
i ṽS

j(5) Sum up  and  as the output word vector.

2.2. GloVe Model with Asymmetric Context Window

XL

XL
i j i j vL

vL

The GloVe Model  with asymmetric  context  windows is  actually  based on the left-side co-occurrence matrix.
Literature  [2]  regards  the  context  of  the  left  co-occurrence  matrix  as  the  asymmetric  context.  Compared  with  the
GloVe model with a symmetric context window, the difference lies in the construction of the co-occurrence matrix.
Set the fixed window size as w, traverse the words in the corpus, count the frequency of the words in the fixed win-
dow on the left side of the target word, and generate the left side co-occurrence matrix which is expressed as . Use

 to represent the elements of row  and column  of the asymmetric co-occurrence matrix. Use  to represent the
low-dimensional word vector based on training the left-side co-occurrence matrix. The objective function of training

 is as follows:

JL =
∑n

i, j=1
f
(
XL

i j

)Ä(
vL

i

)T ṽL
j +bL

i +bL
j − logXL

i j

ä2
(3)

vL
i ci ṽL

j

c j bL
i bL

j vL
i ṽL

j f
where  is the left low-dimensional word vector of the word ,  is the left low-dimensional context vector of the
word ,  and  are offset terms corresponding to  and , and  is the same weight function as formula (2).

3. Concatenated Word Vector Representation with the Asymmetric GloVe Model

Based on the left co-occurrence matrix, two kinds of word vectors are obtained, i.e., the target word vector and
the  context  word  vector.  In  fact,  the  context  word  vector  encodes  the  right-side  information  of  the  word,  and  the
argument is given as follows.

XR XR
ji

j i XR

vR

Use  to represent the co-occurrence matrix based on the right window of the target word, use  to repre-
sent the elements of row  and column  of  and use vR to represent the low-dimensional word vector based on
training the left-side co-occurrence matrix. The objective function of training  is as follows:

JR =
∑n

j,i=1
f
(
XR

ji

)Ä(
vR

j

)T ṽR
i +bR

i +bR
j − logXR

ji

ä2
(4)

XL
i j = XR

ji

XL
i j = XR

ji

(
1≤ i≤ 3,1≤ j≤ 3

)
XL XR

Obviously, . For example, a corpus contains one sentence, that is, “I like basketball”. The vocabulary
is shown in Table 1. Set the fixed window size as 1. The co-occurrence matrix is shown in Table 2 based on the left
window of the target word, and the co-occurrence matrix is shown in Table 3 based on the right window of the target
word. It can be seen that , and  is the transpose of .
  

Table 1    the vocabulary of the sample dataset
word frequency

I 1
like 1
basketball 1

  
Table 2    the left-side co-occurrence matrix XL

I like basketball
I 0 0 0
like 1 0 0
basketball 0 1 0
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Table 3    the right-side co-occurrence matrix XR

I like basketball
I 0 1 0
like 0 0 1
basketball 0 0 0

 

bL
i bL

j bR
i bR

j

(
vL

i

)T ṽ
L

j

(
vR

j

)T ṽ
R

i

ṽL
j vR

j vL

Ignoring  ,  ,  and , we have  = . The objective function actually uses the dot prod-
uct of the ith word vector and the jth word vector to fit the co-occurrence frequency of words i and j. Therefore, we
can treat  as , and rewrite the objective function of training  in the following form:

JL =
∑n

i, j=1
f
(
XL

i j

)Ä(
vL

i

)T vR
j +bL

i +bR
j − logXL

i j

ä2
(5)

vL vR

It can be seen from formula (5) that while training the left low-dimensional word vector, the right low-dimen-
sional word vector is obtained. Intuitively, the word vectors representing the information on both sides of the word
should be concatenated to form the final vector representation of the word. Therefore, the concatenated vector repre-
sentation is proposed with the asymmetric GloVe model. We train half-dimension asymmetric word vectors, namely,

 and , and then concatenate them. The specific steps are as follows. The flowchart is shown in Figure 1.
 
 

Begin

Count the vocabulary

Populate the left-side

co-occurrence matrix

Shuffle the co-occurrence matrix

Train half dimensional

vL and vR 

Concatenate vL and vR  to obtain

vL & vR 

End

Figure 1.  The flowchart of the concatenated vector representation with the asymmetric GloVe model.
 

n1) Count the vocabulary from the corpus and rank the vocabulary according to the frequency of words, where 
is the size of the vocabulary.

XL n×n
2) Set the fixed window size as w,  traverse the words in the corpus,  and calculate the left-side co-occurrence

matrix expressed as . The size of the matrix is .
3) Shuffle the co-occurrence matrix.

vL vR4) Set the dimension to be the half dimension of the GloVe model, and train  and  with formula (5).
vL vR vL&vR5) Concatenate  and  as a low-dimensional word vector expressed as .

4. Experiment

4.1. Experimental configuration

The English Wikipedia corpus containing 200 million tokens is used as the experimental corpus. Other parame-
ters are shown in Table 4. In each experiment, this set of hyperparameters is used unless otherwise stated. In the table,
“vector-size” represents the vector size of the word representation, ”window-size” represents the size of the sliding
window for scanning the corpus, ”max-vocab” represents the upper limit of the frequency in the vocabulary, ”min-
count” represents the lower limit of the frequency in the vocabulary, and “iteration” represents the maximum number
of iterations of the training word vector.
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Table 4    The parameters of training word vector
Parameters vector-size window-size max-vocab min-count iteration

Value 200 10 100000 10 50
 

vS + ṽS vL + ṽL

vL vR

vL&vR

 and  are trained using the GloVe model with a symmetric context window and an asymmetric
context  window, respectively.  Half-dimensional  and  are trained with the asymmetric  Glove model  and con-
catenated to generate . The performances of the three kinds of word vectors are compared.

4.2. Evaluation Task
Quality evaluation. The quality of the word vector representation is evaluated by looking for the target word’s

neighbor words. In this study, the cosine similarity of word vectors is used to measure the degree of word adjacency.

vS + ṽS vL + ṽL vL&vR

Word analogy task. Suppose that there are two pairs of similar words, and the task of word analogy [1] is to
find  the  fourth  word  by  assuming  that  three  words’ vectors  are  known.  For  example,  the  word  vector  of “king”,
“queen” and “woman” is known to find “man”. The fourth word is found by finding the nearest word vector to the
vector of “king+queen+woman”. The similarity of the word vector is calculated by cosine similarity. The word anal-
ogy task’s test set includes a semantic test set (8869 questions) and a syntactic test set (10675 questions). We com-
pare the accuracy by using the syntactic test set. The performances of ,  and  are compared in
the word analogy task. Four corpora are used to verify the validity of the proposed word vector representation includ-
ing the English Wikipedia corpus (200 million tokens, 500 million tokens) and the 1B Word Benchmark corpus (200
million  tokens,  500  million  tokens)  [16].  The  hyperparameters  for  the  Wikipedia  corpus  (200  million  tokens)  are
carefully  selected  to  be  vector-size  500,  window-size  14,  max-vocab 10000,  min-count  10,  and  iteration  50.  The
hyperparameters for the other three corpora are set to be vector-size 600, window-size 10, max-vocab 100000, min-
count 10, and iteration 50 based on expert experience.

Syntactic task. To verify whether the concatenated word vector can reflect more syntactic information, the POS
task and chunking task are selected for verification because these tasks are based on syntax information.

vS + ṽS vL + ṽL vL&vR

• The POS task is to mark the corresponding part of a speech for each word. The NCRF++ model [17] is
used to complete the POS task, which builds an LSTM-CRF framework together with the CNN to encode character
sequences. The ARK dataset [18] is used which includes training sets (1000tweets), validation sets (327tweets), and
test sets (500tweets). The parameter settings of the model are shown in Table 5. ,  and  are used
as the initial word vectors of the NCRF + + model, respectively.
  

Table 5    parameters of NCRF++ model
parameter value

word emb dim 200
char emb dim 100
use_crf True
use_char True
word_seq feature LSTM
char_seq_feature CNN
optimizer SGD
iteration 100
batch size 10
cnn_layer 4
char hidden dim 100
hidden dim 400
lstm layer 1
learning_rate 0.015
lr decay 0.05
momentum 0
l2 1e-8
dropout 0.5

 

vS + ṽS vL + ṽL vL&vR

• The chunking task, also known as shallow semantic analysis, divides the text into syntactically related
parts and marks each part of a sentence with syntactic components such as nouns or verb phrases (NP or VP).
Chunking is  usually evaluated using CoNLL2000 shared tasks [12], the training data is the Wall Street Journal
corpus (WSJ) from sections 15-18 (211727 tokens),  and the test  data is  WSJ from section 20 (47377 tokens).  The
NCRF++ model [17] is used to complete the chunking task. The other parameter settings of the model are shown in
Table  5 except  the  parameter “iteration” which is  set  to  be  50. ,  and  are  used as  the  initial
word vector of the NCRF + + model, respectively.

4.3. Result
Table 6, Table 7 and Table 8 list  the top ten neighbors of “established”, “providing”, and “worse” under the
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vS + ṽS vL + ṽL vL&vRword vectors ,  and , respectively.
 

vS + ṽS vL + ṽL vL&vRTable 6    The top ten neighbors of “established” under ,  and 

vS + ṽS vL + ṽL vL&vR

founded incorporated founded
incorporated founded incorporated
establishments establish organized
establish settled formed
establishing date created
area establishments recogonized
formed formed settled
leader area adopted
establishment populated establish
organizations establishing known

 
 
 

vS + ṽS vL + ṽL vL&vRTable 7    The top ten neighbors of “providing” under  ,  and 

vS + ṽS vL + ṽL vL&vR

provide provide provide
provided provides provides
provides provided provided
additional additional offering
services services creating
access offering giving
allowing allowing requiring
support creating maintaining
creating access offers
assistance offers allowing

 
 
 

vS + ṽS vL + ṽL vL&vRTable 8    The top ten neighbors of “worse” under  ,  and 

vS + ṽS vL + ṽL vL&vR

better better better
bigger stronger stronger
getting happier harder
harder even easier
fared getting weaker
matters things faster
louder harder bigger
situation quicker happier
progressivly bigger happen
nothing tougher clearer

 

vS + ṽS vL + ṽL

vS + ṽS vL + ṽL vL&vR

vL&vR

vL&vR vL&vR

In Tables 6−8, bold words are syntactic neighbors, and italic words are semantic neighbors. It can be seen that
from  to and then to vL&vR, the numbers of semantic neighbors decrease, and the numbers of syntactic
neighbors  increase.  For  example,  inTable  6,  for ,  and ,  the  numbers  of  semantic  adjacency
words  of “established” are  6,4,  0,  respectively,  while  the  syntactic  adjacency  words  of “established” are  3,5,9,
respectively. The same is true for the neighbors of “providing” and “worse”. Due to the limited space, more words
could not  be listed here.  In sum, under ,  the adjacency words include more words with similar  syntax.  It  is
shown that  represents more syntactic information. Therefore,  can perform well in syntax-based tasks.

vL&vR
The experimental results of the analogy task are given by Table 9. It can be seen that the accuracy of the word

analogy task is high for different sizes and different kinds of corpora on the syntactic test set under .
 
 

Table 9    Results on word analogy tasks with the syntactic test set on different corpora

word rep. Wikipedia corpus
(200 million tokens)

Wikipedia corpus
(500 million tokens)

1B Word Benchmark
(200 million tokens)

1B Word Benchmark
(500 million tokens)

vS + ṽS 50.19% 56.94% 41.54% 51.06%

vL + ṽL 49.82% 56.41% 42.85% 50.28%
vL&vR 54.70% 60.01% 51.53% 56.70%

vS + ṽS vL + ṽL vL&vR

vL&vR vL + ṽL vS + ṽS
The accuracy comparison of  ,  and  for  POS task is  shown in Table 10.  The accuracy

with the initial word vector  has the best performance, followed by  and .
 
 

Table 10    Accuracy comparison on POS task
word rep. Dev Test

vS + ṽS 88.41% 88.52%

vL + ṽL 88.76% 89.01%
vL&vR 89.22% 89.49%

 

vS + ṽS vL + ṽL vL&vRThe F1 score comparison of  ,  and  for the chunking task is shown in Table 11. The F1
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vL&vR vL + ṽL

vS + ṽS
score  of  the  chunking  task  with  the  initial  word  vector  has  the  best  performance,  followed by  and

.
 
 

Table 11    F1 score comparison on Chunking task
word rep. Test

vS + ṽS 94.37%

vL + ṽL 96.11%
vL&vR 96.14%

 

vL&vRThe above experimental results show that  can encode syntactic information better and is suitable to be
the initial word vector for syntax-based tasks.

4.4. Ablation study
vS + ṽS vL + ṽL vL&vR

vL&vR

vL&vR

The performance of ,  and  in the word analogy task with the syntactic  test  set  is  com-
pared  under  different  context  window sizes  or  under  different  word  vector  lengths.  In Figure  2(a) and (b), experi-
mental results are shown for different context windows or different vector lengths. As can be seen from Figure 2(a),
under various window sizes,  has the best performance. As can be seen from Figure 2(b), under various vector
lengths,  has the best performance, and the larger the dimension, the more obvious the advantage.
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2 200

50%

4 300
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6 400
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8 500
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45%

40%

35%
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12 14

vL & vR

vL + vL

vS + vS

vL & vR

vL + vL
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~
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Figure 2.  (a) shows the accuracy for the analogy task with the syntactic test set varies with the context window size,
and (b) shows the accuracy for the analogy task with the syntactic test set varies with the vector size.

 

4.5. Running Time
The running time of the GloVe model mainly depends on the time of populating co-occurrence matrices and the

time of  training word vectors.  The more sparse the co-occurrence matrix  is,  the shorter  the time is  needed to  con-
struct the co-occurrence matrix. The lower the dimension of the word vector is, the shorter the time is needed to train
the word vector.

vL&vR vS + ṽS vL + ṽL
The left-side co-occurrence matrix is more sparse than the symmetric co-occurrence matrix. Therefore, the time

of the populating co-occurrence matrix for  is shorter than that of  and is the same as that of  .
vL&vR vS + ṽS vL + ṽL vL&vR

vL + ṽL vS + ṽS
The dimension of  is the half of  and . Therefore, the training time of  is the half of

 and less than the half of .
vS + ṽS vL + ṽL vL&vR

vL&vR

vL + ṽL vS + ṽS

The  running  time  of  200-dimensional ,  and  is  recorded.  The  parameter  settings  are
shown in Table 4.  The running time comparison is  shown in Table 12.  It  can be seen that  has the shortest
running time, followed by  and . This is the same result as shown by our analysis.
 

Table 12    Running time
Word rep. Running time

vS + ṽS 2 hours and 36 minutes

vL + ṽL 1 hours and 44 minutes
vL&vR 1 hours and 3 minutes

 

5. Analysis of Experimental Results

The experimental results show that the performance of the concatenated vector representation (with the asym-
metric Glove model) is better than the traditional word vector representation for syntactic tasks. This is because con-
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catenated word vectors encode more syntactic information.
The proposed word vector of the training is based on the left side co-occurrence matrix, and the word frequen-

cies of the left side and right side of the target word are not added together. Therefore, the proposed word vector can
encode the left side and right side information of the word, that is, it can better reflect the syntactic information.

In addition, it can be theoretically deduced that the target word vector and the context word vector (based on the
left co-occurrence matrix training) embody the left context information and the right context information of the word,
respectively. Therefore, concatenating these two word vectors as the final word vector can better reflect the syntactic
information of the word.

6. Conclusion

In this paper, the concatenated vector representation has been proposed with the asymmetric Glove model. The
word vector has been trained based on the left side co-occurrence matrix, and the left word vector and the right word
vector are concatenated as the output vector. Compared with the word vector trained by the GloVe model with sym-
metric context windows and asymmetric context windows, this vector can aggregate more words with the same syn-
tax,  and  has  higher  performance  on  the  syntactic  test  set  for  the  word  analogy  task,  POS task  and  chunking  task.
These experiments have shown that the proposed word vector representation encodes more syntactic information and
is suitable to be the initial word vector for syntax-based tasks. In addition, the experiment has shown that the time of
learning the concatenated vector representation is significantly reduced. In the next step, we will study how to get a co-
occurrence matrix that fully reflects multiple levels of information, effectively integrates multiple word representation
vectors, and greatly improves the performance of representation learning.
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