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Abstract: Real-time semantic segmentation is a critical step for various real-world application scenarios
such as autonomous driving systems. How to achieve a high accuracy while keeping a high inference
speed has become a challenging issue for real-time semantic segmentation. To tackle this challenge, we
propose a Hybrid Dilated Grouping Network (HDGNet) for real-time semantic segmentation of outdoor
scenes in this study, which not only improves the accuracy of image segmentation, but also considers the
inference speed. To reduce model parameters to speed up inference, we propose to use factorization con-
volution to replace ordinary two-dimensional convolution. However, simply reducing the amount of
model parameters may sacrifice segmentation accuracy. We thus further introduce dilated convolution to
extract multi-scale spatial information. The HDG module is constructed by combining factorization con-
volution and dilated convolution, which not only reduces the model parameters and improves the model
inference speed, but also extracts local and more contextual information. And furthermore, to enhance
the feature expression ability of the network, we introduce a channel attention mechanism to capture the
information interaction between channels. After obtaining the shallow features and deep high-level
semantic information, we design the skip layer connections to fuse the feature branches from different
stages to improve the segmentation accuracy. The experiments conducted on the widely used datasets
show that the proposed model achieves superior real-time performance over existing methods but using
significantly fewer model parameters.

Keywords: real-time semantic segmentation; factorization convolution; depth-wise separable convolu-
tion; dilated convolution; channel attention mechanism

1. Introduction

Semantic segmentation is an increasingly popular research topic in recent years, that aims to predict the seman-
tic class labels of all pixels in a given input image and present the segmentation results of different color region
masks. It requires accurate segmentation of objects, edges and other details in the image [1], which can help us better
analyze scene information. Different from image classification [2], semantic segmentation requires dense pixel-level
prediction capabilities and greater computational costs. With the development and demand of autonomous driving,
semantic segmentation of outdoor scenes has been attracted increasing attention, since it is a fundamental step for
understanding the scene for the safe driving of autonomous vehicles. Figure 1 shows an example of semantic seg-
mentation of outdoor scenes. For practical applications, it is critical to perform semantic segmentation of the scene as
fast as possible to obtain effective information for making real-time judgments on the environment.

In traditional methods of semantic segmentation, the image is usually segmented and labeled according to the
underlying features. Based on different segmentation standards, traditional image segmentation algorithms can be
classified as the following three methods: threshold-based segmentation, cluster-based segmentation, and graph the-
ory-based segmentation. The threshold-based image segmentation method is to divide the pixels according to the gray
level, with a certain threshold as the segmentation line, and finally the entire image is divided into target and back-
ground. The threshold is generally a gray value used in an early method of Otsu [3]. Clustering segmentation is the
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process of distinguishing and classifying each pixel in an image according to certain requirements and rules, and
finally determining that each pixel belongs to a certain region. Mean-shift [4] and SLIC [5] are widely used in cluster
segmentation. Image segmentation based on graph theory is to transform the segmentation problem into graph seg-
mentation. Traditional semantic segmentation generally uses Markov Random Field (MRF) and Conditional Ran-
dom Field (CRF) to build a probabilistic graphical model, and then uses the graph theory to solve the problem [6].
The main idea is to assign a random vector to each feature and pixel. The probability that each pixel belongs to a
class determines the classification of that pixel. Traditional image segmentation methods often need to find suitable
features and further optimization [7, 8]. The feature extraction of traditional methods mainly relies on artificially
designed extractors. At the same time, each method aims at specific applications, and the generalization ability and
robustness are poor with a weak segmentation effect.
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Figure 1. Semantic segmentation of outdoor scenes.

The advancement of artificial intelligence [9, 10] and deep learning technologies [1 1] facilitates the improve-
ment of semantic segmentation in recent years. The multi-task learning framework combines depth estimation and
semantic segmentation to improve segmentation performance, and image segmentation in specific scenarios. It has
significantly enhanced the quality of semantic segmentation in real life applications, like in autonomous driving,
drones [12], medical diagnosis, remote sensing image segmentation, and video surveillance [13]. Deep convolutional
neural networks have also demonstrated powerful capabilities in high-resolution image classification [14]. In particu-
lar, Fully Convolutional Networks (FCNs) [15], which are the forerunners of CNNs for semantic segmentation tasks.
Encoder-decoder networks are emerging as effective frameworks for segmentation problems. Although previous net-
works have achieved remarkable results in terms of segmentation accuracy [16, 17], most of them ignore the seg-
mentation efficiency. That is, the high computation cost and the storage space needs make it difficult to meet the
requirements for rapid interaction with the environment in real time [18]. Thus, designing lightweight and efficient
networks is the main trend to solve these existing problems. In general, the smaller the number of model parameters,
the shorter the inference time and the less redundancy. In the current segmentation network, researchers prefer to
compress the network and shrink the amount of parameters to speed up the process [19-21]. Although the inference
speed of the model has reached a certain level, model's accuracy has suffered as a result. Therefore, our purpose is to
explore how to extract a high-precision and high-efficiency real-time outdoor scene semantic segmentation network.

Most of the previous works have demonstrated the effectiveness of dilated convolution [22]. It may both
broaden the receptive field and keep the visual resolution intact. Those real-time-targeted semantic segmentation
models employ dilated convolutions in their networks. Depth-wise separable convolution is another type of methods
that effectively reduces the amount of parameters. Traditional convolution combines spatial and channel correlation to
extract features, while depth-wise separable convolution separates spatial information from channel information. It
independently computes cross-channel and spatial information to analyze the correlations between them and is often
used in lightweight networks [23, 24]. However, directly replacing standard convolutions with depth-wise separable
convolutions results in significant performance degradation, as depth-wise separable convolutions greatly reduce
parameters.

To sum up, the contribution of this paper can be summarized in the following four points:

(1) Aiming at the problem of slow inference speed of semantic segmentation network model, this paper pro-
poses to use factorization convolution to replace ordinary convolution, and combines the advantage of depthwise sep-
arable convolution to reduce the number of parameters to design a lightweight network module to speed up the net-
work inference speed.

(2) In order to avoid the problem of insufficient network feature expression ability caused by the reduction of
parameter number, a method is proposed to apply dilated convolution to factorization convolution in the depth direc-
tion. The advantage of dilated convolution is that more abundant long-distance information can be obtained, so that
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the network can extract enough semantic information while reducing the number of parameters.

(3) an efficient hybrid dilated grouping module is designed by combining dilated convolution, factorization con-
volution and depthwise separable convolution. In order to avoid gradient vanishing, the module adopts ResNet resid-
ual structure and connects the input with the output through a series of convolution transformations to compensate for
information loss. The deep features are extracted by reusing the module at different stages in the network.

(4) In order to further improve the feature expression ability of the network, considering that the network pro-
posed above has used dilated convolution to capture enough context-space information, a lightweight attention mod-
ule is integrated in the encoder stage of the network to capture the information correlation between channels.

The rest of this paper is structured as follows: In Section II, we introduce related works which have employed
different approaches in real-time semantic segmentation. In Section III, IV and V, we introduce the model structure
proposed in this paper in detail, including attention module and the hybrid dilated grouping module, which is com-
posed of dilated convolution and factorization convolution. In Section VI, we conduct ablation experiments and
global experiments to verify that the network we designed is effective. A conclusion and future works are given in
Section VII.

2. Related Work

2.1. Lightweight segmentation networks

In recent years, with the increasing attention paid to practical applications in challenging scenarios, many works
have explored the potential of more lightweight architectures. In intelligent vehicle systems, speed is an important
indicator to consider in outdoor driving scenarios. Real-time semantic segmentation requires not only high precision
prediction results, but also fast reasoning speed. There are generally two types of real-time semantic segmentation
models: (1) The models' initial features are extracted using a lightweight backbone network, and subsequently deep
semantic features and shallow features are fused using various feature fusion modules. (2) These approaches gener-
ally design a lightweight module that can be used for pixel-level prediction, in which both factorization convolution
and dilated convolution are present. ENet [19] is an efficient lightweight network for semantic segmentation in real-
time. To decrease the quantity of computation, it cuts off a lot of convolution kernels. However, the lightweight net-
work destroys the spatial information through the compression channel, and the segmentation accuracy is not good. A
better real-time semantic segmentation network for high-resolution images is a priority, Zhao et al. [25] proposed the
Image Cascade Network (ICNet), which utilized an image cascade strategy to improve segmentation efficiency.
When using lower resolution input images, however, performance suffers. ESPNet [22] and ERFNet [13] are two
other efficient networks for real-time semantic segmentation. They have similar model parameters as ENet. However,
the segmentation accuracy and inference speed are improved compared with ENet. Mehta et al. [26] proposed an
efficient spatial pyramid module in ESPNet, which could obtain multi-scale context information. Romera et al. [20]
proposed the ERFNet, which used residual connections and factorization convolution to ensure efficiency and accu-
racy. Yu et al. [27] proposed two branches in BiseNet. The first fork is concerned with retaining the initial network
layer's spatial information, while the second is concerned with extracting the network's deeper characteristics. These
networks balance speed and accuracy to a certain extent, but speed and accuracy are mutually restricted. How to min-
imize computation while ensuring the network's performance or how to feed more image information to the real-time
network still needs to be further explored.

2.2. Factorization Convolution, Depth-wise Separable Convolution

Factorization convolution and depth-wise separable convolution are frequently employed in place of conven-
tional two-dimensional convolution to preserve segmentation performance while decreasing the amount of parame-
ters. Factorization convolution, also known as asymmetric convolution, is the factorization of standard convolution. In
other words, replacing nXn convolution with nx 1 convolution and 1 X7 convolution can reduce computational
cost and memory, and can be widely used in lightweight segmentation networks. Szegedy et al. [28—31] replaced the
large convolution kernel with some small convolution kernels while guaranteeing the receptive field in Inception net-
works. To reduce computing costs, Chollet [23] and Howard [24] used depth-wise separable convolutions in Xcep-
tion and MobileNet, respectively, but the accuracy dropped slightly. More and more researchers tend to use factor-
ization convolution to decompose the 3 X 3 convolution into 3 X 1 and 1 X3 convolutions in real-time semantic seg-
mentation, such as EDANet [33], DABNet [41] and LEDNet [41], which greatly reduces the amount of computation.

2.3. Dilated Convolution
Simply reducing the quantity of model parameters may reduce the segmentation accuracy. Thus, dilated convo-
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lution combined with factorization convolution is usually used to design effective modules for real-time semantic
segmentation. Dilated convolution increases the receptive field of the model by padding zeros in the ordinary 2D
convolution without sacrificing the resolution of input images, and scene parsing studies have shown that long-dis-
tance information is essential, so it is often used in semantic segmentation models. Compared with the original nor-
mal convolution operation, for the dilated convolution, there is an additional parameter known as the dilation rate,
which represents the number of intervals for inserting hole zeros into the convolutional kernel. In the Deeplab series
[16], an Atrous Spatial Pyramid Pooling (ASPP) module was proposed that is mainly based on several different con-
volution kernels to obtain more contextual information, and each convolution kernel has a different dilation rate;
Wang et al. [34] proposed the LEDNet, which used factorization and dilated convolutions to form the basic module;
Lo et al. [32] used dilated convolutions and dense connections to design efficient network structures in the EDANet.
At the moment, most semantic segmentation networks use dilated convolutions, which have been shown to work well
for pixel-level prediction tasks.

2.4. Attention Mechanism

In recent years, we often see that attention mechanism is applied to various deep learning tasks. It is analogous
to the visual attention system in humans. It examines the entire image to find the place that needs special attention,
and then concentrates all of its efforts there. Huang et al. [35] proposed the CCNet, which designed an efficient cross-
attention module for detecting visual correlations; Fu et al. [22] proposed the DANet, which adaptively integrates
local information and global dependencies, fusing channel and spatial attention to further enhance feature representa-
tion. That attention mechanism enabled each pixel to fully capture the global information, but it needed to generate a
huge attention map since the attention map of each pixel needed to be calculated for the whole image. The above
attention models require complex matrix multiplications at the pixel level, which means they are not suitable for the
network structures working in real time. Researchers have developed an increasing number of lightweight attention
networks in recent years to improve feature representation. SENet [36] is lightweight, mainly to increase the model's
sensitivity to channel attributes by focusing on the correlation between channels. It could learn the relevance of vari-
ous channel elements on its own; Woo et al. [37] proposed the CBAM combining spatial and channel attention,
which achieved better results while ensuring the amount of computation; Wang et al. [38] proposed an efficient cross-
channel interaction strategy without dimensionality reduction in ECANet, and it not only maintains segmentation
accuracy but also greatly reduces network complexity.

3. Network Structure

In this study, our goal is to create a lightweight network with fewer parameters and removes unnecessary struc-
tures to strike a trade-off between speed and accuracy for segmentation. Based on the hybrid dilated grouping mod-
ule and attention module, we design a lightweight real-time network structure for semantic segmentation of outdoor
scenes, as shown in Figure 2.
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Figure 2. Architecture of proposed Hybrid Dilated Grouping Network. (A) HDGNet detailed network architecture;
(B) Combinations of different dilation rates used by HDG modules; (C) DownSample module; (D) DABNet back-
bone architectures; (E) HDGNet backbone architectures.
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Different from DABNet backbone architecture shown in Figure 2(D), It can be seen that we design an efficient
hybrid dilated grouping module in the encoder for the full extraction of image features, and the attention module cor-
rects the characteristics of the channels to improve the expressive power of the neural network, so that we do not use
a complex module at the decoding end to recover the image information. Our network that shown in Figure 2(E) has
higher segmentation accuracy than other methods with fewer parameters and can achieve a certain inference speed.

Early processing of high-resolution input is computationally expensive, to reduce the amount of calculation,
three 3 X3 convolutions are used to shrink the size of the input image to extract the initial features of the image.
Referring to the design of the initial block in ENet, we use the same block, all downsampling layers share a common
building block that is then extended to two different modes in the network. If the amount of input channels exceeds
the amount of output channels, this module is a simple 3 X 3 convolution with a stride of 2. Otherwise, a 2 X 2 max
pooling layer with a stride of 2 is added, and the convoluted and pooled feature maps are then connected to form the
final downsampled output.

Although the downsampling operation reduces the input image's resolution through convolution operation to
increase the receptive field, some visual details will be lost in the process. In contrast to many semantic segmentation
network models, we only perform three downsampling operations to get 1/8 of the image size, while they do five
downsampling operations to get 1/32 of the image resolution, which will cause a huge loss of information. To this
end, we use skip layer connections between the features after each downsampling block and characteristics of the
middle layer to make up for the information that was lost.

Each downsampling block is followed by a hybrid dilated grouping module, which includes different numbers
of consecutive hybrid dilated grouping blocks. The first and second hybrid dilated grouping modules consist of 3 and
6 HDG blocks, respectively, which are used for dense feature extraction. To reduce information loss and better per-
form feature propagation, a skip layer connection is adopted in the hybrid dilated grouping module to combine the
input with the deepest features, which means that in each HDG module, the input of the first HDG block is added to
the output of the last HDG block. The skip-layer connection can strengthen information dissemination and can be
seen as a residual connection that avoids gradient disappearance. This operation alleviates the conflict between the
loss of semantic information in shallow features and the lack of boundary and detail information in deep features. In
addition, we use hybrid dilated convolution in the HDG module. The dilated rate of each hybrid dilated grouping
module shown in Figure 3 gradually expands the receptive field with different settings of the dilation rate in each
block. In addition to obtaining spatial context information, we also need to capture more channel features. An effi-
cient channel attention module is used after each skip layer connection, aiming to focus on the extraction of channel
features.
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Figure 3. Hybrid dilated convolution module.

Our network is different from many other segmentation networks that use an encoder-decoder structure. At the
decoder end, we do not design complex modules and complex network structures to recover image information. Con-
sidering that reducing the number of parameters may affect the extraction and restoration of features and thus reduce
the accuracy, we propose the reuse of feature maps at different stages in the decoder to make up for the lost informa-
tion. The low complexity and computing cost of the network guarantee the real-time performance of the network. The
experimental results show that our model has few parameters and low complexity, which can achieve certain preci-
sion and meet the design requirements of real-time semantic segmentation network.

4. Hybrid Dilated Grouping Module

This paper is to build a lightweight semantic segmentation network, which can not only attain a certain seg-
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mentation accuracy but also have a certain reasoning speed. In the design method of real-time semantic segmentation
network model, we choose to design a lightweight module to extract deep semantic information, and then reuse it in
the whole network. We design a hybrid dilated grouping module to be an effective module for dense prediction. For
real-time semantic segmentation, obtaining a certain precision in segmentation and also meeting the real-time
requirements is essential. Therefore, we take these two requirements into account, first of all, from the perspective of
reducing the amount of model parameters, we use factorization convolution and depth separable convolution to
replace the traditional two-dimensional convolution, which can greatly reduce the amount of model parameters, thus
speeding up the network's inference; Secondly, considering that reducing the number of parameters may affect the
extraction of features and thus reduce the accuracy, we propose to use dilated convolution to capture long-distance
context information and extract deeper semantic information. Combining factorization convolution, depth-wise sepa-
rable convolution, and dilated convolution, our HDG Module can capture long-distance context information with
fewer parameters. We will discuss each component in the HDG Module in detail.

4.1. Factorization Convolution, Depth-wise Separable Convolution

Current lightweight real-time semantic segmentation usually uses depth-wise separable convolution and factor-
ization convolution to design efficient modules for dense prediction. For a standard N X N convolution kernel, it can
be replaced by a 1 X N convolution and an N X 1 convolution. Factorization convolution can reduce the N X N con-
volution kernels per-pixel complexity from O(N?) to O(N). Depth-wise separable convolution integrates ordinary
standard convolution into depth-wise convolution followed by point-wise convolution. Each convolution kernel of
depth convolution corresponds to one channel, while each convolution kernel of conventional convolution operates
on each channel of the input image. For a K X K convolution kernel, the input’s size is F' X F X M and the output’s
size is FXFXN. M and N are the number of input and output channels respectively. The calculation amount of
conventional convolution is: K2F?>MN , and the calculation amount of depth-wise convolution is: K2F>M. It can be
seen that we apply factorization convolution to depth-wise convolution can significantly decrease the amount of com-
putation, as shown in Figure 4. Referring to EDANet [32], it can be expressed as follows:

M

N
Map, =Y Y K pl(x=iy=))

i=—M j=—N
M
=Y K
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where 1, represents a 2D images with w number of channels, K denotes a standard convolution kemel, K, and K,
are 1D convolution kernels in different dimensional directions, respectively. M, N represent the size of the convolu-
tion kernel. And (x,y) represents the position of the pixel. Map,, is a feature map obtained by using factorization
convolution in the depth direction.
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Figure 4. HDGModule (D: dilation rate, w: input channels).
4.2. Hybrid Dilated Convolution

In 1-D, dilated convolution is described as:

L
output[i) =y " input[i+r-[|A[l]. )

=1
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where inputl[i] and output[i] represent input and output signals, respectively, A[!] is the filter of length L, and r
corresponds to the dilation rate we use to sample the input signal. In standard convolution, r = 1.

To enrich the multi-scale feature extraction capability of the CNN network, dilated convolution is used to gather
long-distance context information for semantic segmentation by inserting holes (zeroes) between pixels in the convo-
lution kernel to increase the receptive field without reducing the resolution of feature maps. This enables denser fea-
ture extraction in relatively deep layers. The k X k convolution kernel is added with a dilation rate, then the size of the
dilated convolution kernel is k; X k,, where k; = k+ (k— 1) X (r—1), r is a dilation rate.

However, when the dilation rate of the dilated convolution becomes large in the high layers, the sampling of the
input becomes sparse. This can cause some new problems: local information may be lost, some information over long
distances may not be relevant, and the grid effect [39] may break the link between regional details, which is not con-
ducive to learning features. To eliminate the grid effect, we propose a novel hybrid dilated convolution. While cap-
turing multi-scale context information, it can eliminate the grid effect in traditional dilated convolution, so that the
network can gather more meaningful information and improve the model's capacity to convey features.

A hybrid dilated grouping module based on three branches in parallel is proposed to capture more context
information of multi-scale objects by mixing three extended convolution cores, as shown in Figure 3. This mixing of
information is helpful to model learning and model robustness. According to the hybrid dilated convolution theory
[40], we set different dilation rates for each hybrid dilated module. The common divisor of the dilation rate in each
module cannot be greater than 1, and all dilation rates should show a gradually increasing trend. As shown in Figure 3,
it has two advantages: First, it eliminates the grid effect caused by inserting holes in the convolution kernel; second, it
captures more contextual information about multi-scale objects by combining three dilated convolution kernels. In
order to make up for the information loss produced by the dilated convolution operation, the hybrid dilated convolu-
tion module connects the input feature with the output.

4.3. HDGModule

Previous work has designed many lightweight network structures [20, 33], Inspired by these network structures,
this paper designs an efficient hybrid dilated grouping module. Unlike other lightweight modules, our module does
not use a bottleneck structure to reduce dimensions but uses a non-bottleneck structure to obtain better accuracy. The
original input is sent to three branches to extract multi-scale contexts at different scales. The three branches use dif-
ferent dilation rates to capture information at different scales of a single image. With the common advantages of
dilated convolution, factorization convolution and residual connection, better results can be obtained in the case of
limited computing power. It can jointly capture the surrounding and context information, which is very suitable for
high-resolution urban scenes.

Our HDG module is shown in Figure 4. Inspired by most lightweight structures, the HDG module combines
dilated convolution with factorization convolution, the input channel remains unchanged. It is then fed into three
branches with different dilation rates. Finally, the number of channels is recovered by 1 X 1 point-wise convolution
and all channel information is fused through residual connection. Each branch is composed of factorization convolu-
tions, which greatly reduces the amount of computation. To broaden the network's receptive field, in this work, we
further perform dilated convolution on the factorization convolution to capture more long-distance feature informa-
tion. However, when the dilation rate is set relatively high, the model needs to fill a large number of holes in the con-
volution kernel to maintain the resolution of the feature map, which brings a huge amount of computation and does
not meet the design principles of lightweight networks. To solve the above contradiction, we apply dilated convolu-
tion to the factorization convolution in the depth direction on each branch to decrease the amount of computation,
which is called the hybrid dilated grouping convolution in the depth direction.

In the hybrid dilated grouping module, residual connection is to make up for the lack of information. In the deep
network, when the number of layers increases, issues like gradient dissipation and explosion become more prevalent.
The residual connection connects the input and output, which can solve these problems well. To this end, we adopt
residual connections to solve the degradation problem of deep neural networks, making the forward and backward
propagation of information more fluent.

We apply activation functions in the model to boost the nonlinearity of the network model in order to improve
its nonlinear expression capabilities. A pre-activation function is adopted in the hybrid dilated grouping module in this
work, and we use batch normalization before each nonlinear function. As with ENet, we use PReLU as a nonlinear
operation because it performs better than ReLU in the shallow network model.

The HDGModule can be summarized as follows: First, the module uses depth-wise separable convolution in
each branch and applies factorization convolution on depth-wise convolution. Three branches with different dilation
rates are responsible for extracting the corresponding context information. Then, the three branches are stacked
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together and a residual connection is taken with the input. Finally, in order to make the number of channels the same
as the original, pointwise convolution is used so that all channel information can be fused. This series of operations
can be described as follows:

Xp = P(XHDGin)- 3)

V1 = Crix3.a1(Caxr,a1(Xp)). 4)

¥2 = Cia.a2(Cax1.a2 (X)) (5)

Y3 = Cixa,a3(Cax1,a3(Xp))- (6)

Yupcou = Cixi(p(concat(y1,y2,¥3, XupGin))) (7

where Xypcin and Yupcen denote the input and output of the HDG module respectively, p is the PReLU nonlinear
activation function, y;, y, and y; are the outputs of three branches in HDG module, C,,x, is the convolution kernel
of m X n, d represents the dilation rate, and concat denotes feature concatenation.

5. Attention Module

In general, due to the small number of network layers, it is difficult for lightweight networks to extract enough
deep features as the same as large networks. Therefore, generating more useful features and adding them to our net-
work is an efficient strategy to improve segmentation accuracy. We introduce the attention mechanism into the pro-
posed network model, which is helpful for the model to extract valuable information. Considering that we have
already used HDG modules with dilated rate combinations in the network, which can capture long-distance spatial
information, we only introduce the channel attention module and assign different weights to each channel to
strengthen the characteristics of important channels, avoid the interference of redundant information and noise
between channels, so that the model can adapt to the instability brought by data changes, and enhance the robustness
of the model. In order to improve the feature expression ability of the network model, we introduce channel attention
mechanisms at different stages of the network encoder to capture channel correlation. At the same time, in order to
improve the semantic segmentation performance without increasing the amount of network parameters, we use a
lightweight attention module to improve the model's expression ability.

We use ECANet [38] as a module to extract channel information in the network, which is a lightweight atten-
tion model improved based on SENet module, as shown in Figure 5. Although it only involves a small number of
parameters, it can achieve significant performance gains. The local cross-channel interaction technique proposed by
this channel attention network does not include dimensionality reduction, which can effectively avoid the impact of
dimension reduction on the channel attention learning effect. By adding the channel attention mechanism at different
locations of the network, the feature expression ability of the model can be adaptively improved, which greatly pro-
motes the connection between local and contextual information. The channel attention module we introduced in the
network is placed after each feature fusion, which can well extract the channel with the strongest semantic informa-
tion relevance in the network, enable the network model to pay more attention to the feature extraction of the required
target, make the whole process of feature extraction and fusion more effective, and improve the fusion efficiency

between features.
g GAP® 1 Sigmoi C |||||
1L N = BN AT
W 1x1xC 1x1xC W

Figure 5. Efficient Channel Attention Module.

This attention module first performs channel-by-channel global average pooling without reducing dimensions
and then obtains the weight of each channel through one-dimensional convolution with the size of k to complete cross
channel information interaction. The ECA module captures local cross channel interaction by evaluating each chan-
nel and its k nearest neighbors, where k reflects the coverage of local cross channel interaction, i.e. how many neigh-
bors participate in a channel's attention prediction, and k is adaptively calculated. The weight of each channel is then
determined using the sigmoid activation function, and it is eventually weighted to the original feature.we should
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expand to understand that this attention module is actually a two-step operation. The first step is to use global aver-
age pooling to compress the global spatial information into the global information. The second step is to obtain the
weight of each channel through one-dimensional convolution to complete the information interaction across channels.
The operating principle of ECANet is described as follows:

ECA(F) = o(f**(T(AvgP(F)))) X F. (8)

where T represents the transposition, compression operations of the tensor dimensions, specifically, the input of
1 xCxWxH will become 1 xCx1x1 after the global average pooling operation. Our goal is to change it into the
tensor form of 1 X 1 X C. Therefore, the T operation is to compress the tensor into 1 X C X 1 and then transpose it into
1x1xC. f** represents the adaptive convolution kernel, and k denotes the coverage of local cross channel interac-
tion, AvgP denotes global average pooling, o is the sigmoid nonlinear activation function, F is the input feature
map.

6. Experiments

In this section, we conduct experiments on the proposed network on Cityscapes and CamVid datasets to verify
the effectiveness of the model. At first, the dataset and parameter settings are introduced. Then ablation experiments
are performed on the Cityscapes validation set to demonstrate our network's efficacy. Finally, we compare our net-
work with other existing semantic segmentation networks.

6.1. Experimental Settings

The experiment has been conducted on a computer with specifications of Intel i7-8700K CPU and a single
GeForce GTX 1080Ti GPU. The programming language is Python 3.8, and the deep learning framework is PyTorch
1.8.1. We use the computing platform CUDA 11.0.

We primarily conduct ablation experiments on the Cityscapes validation set to validate the proposed algorithm
model's performance. The Cityscapes dataset, which includes 5000 high-quality pixel-level annotated photographs of
urban driving situations from 50 locations, is given collaboratively by three German companies, including Daimler
AG. There are 19 semantic categories in the dataset, such as people, ground, vehicles, buildings, etc. The image reso-
lution is 1024 x 2048, including a total of 2975 samples were used for training, 500 for validating, and 1525 for test-
ing. Because the whole experiment does not use any pre-trained models, we use another low-resolution dataset,
CamVid for outdoor scenarios to facilitate training and quickly judge the quality of the model, which is divided into
11 semantic categories and contains 367 training samples, 101 validation samples, and 233 test samples. The image
resolution in the CamVid dataset is 720 X 960. To reduce computation and memory usage, the raw inputs for net-
work training are resized to 512 X 1024 and 360 x 480 for Cityscapes and CamVid, respectively.

In the training of neural networks, in addition to finding optimal parameters such as weights and biases, setting
the right hyperparameters is equally important in the training of the network. For example, too small a learning rate
can lead to slow convergence of the model, while too large a learning rate can cause the model to oscillate or diverge
around the point of minima. Smaller batch sizes can increase the convergence speed of the model but can lead to
increased noise during training. Larger batch sizes reduce noise but take up more memory. Too few iterations can
lead to model underfitting, while too many iterations can lead to model overfitting. To train the network end-to-end
for the Cityscapes dataset, we employ the stochastic gradient descent (SGD) approach with a batch size of 4 to fully
utilize GPU memory. We set momentum to 0.9 to accelerate convergence, and weight decay is set to 1x 107* to pre-
vent overfitting. The learning rate is adaptively modified after each iteration using the “poly" learning approach,
according to the following formula:

iteration )” ower

Ir = Irpqse X (1 -
max_iteration

©
where Irp,, denotes the initial learning rate, /r is the learning rate after each iteration. In order to ensure model’s
learning effectiveness while quickening the convergence and enhancing the efficiency of model operation, we set the
initial learning rate to 0.045 during training; iteration and max_iteration respectively represent the order of the cur-
rent iteration and the total number of iterations for each epoch; the default value of power is 0.9. We apply online
hard example mining (OHEM) loss on the Cityscapes dataset to help the model focus more on difficult-to-classify
examples during training, which is proposed for the problem of class imbalance. It is based on the cross-entropy loss:
c-1

Loss==3 yilog(pi) (10)

i=0
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where C is the number of classes, y; is the true value, and p; is the probability of the predicted value.

Through multiple experiments, considering the advantages of Adam’s ability to adaptively and dynamically
adjust the learning rate, we employ the Adam optimizer to better train the CamVid dataset. The batch size is set to 12,
the momentum is set to 0.9, the weight decay is 2 x 107*, and the “poly” learning strategy with an initial learning rate
of 0.001 is used. Referring to ENet [19], to eliminate the weight imbalance issue on the CamVid dataset, we utilize
the following equation.

1
0 = (et o) (a
where W, 1s the weight, p ., is the propensity score and c is an additional hyper-parameter, we set it to 1.10.

Since our proposed overall network does not use any pretrained model, we set the training epoches to 1000. The
limited amount of data in the dataset can not meet the application of actual scenarios. We use reasonable data
enhancement strategies to make the model better adapt to different data distributions and improve the robustness of
the model. Before model training, we used random flipping, mean reduction and random scale scaling to reduce the
sensitivity of the model to images and avoid the problem of sample imbalance. Random scale scaling includes
{0.75,1.0,1.25,1.5,1.75,2.0} to improve the generalization performance of the model. Finally, the image is ran-
domly cropped into a fixed size for training. To demonstrate that our network can converge well on Cityscapes and
CamVid datasets, referring to MSCFNet [41], we give the training process curves on the above two datasets. Figure 6
plots HDGNet training curves on different datasets. We can see that the two curves decline smoothly, representing
that our network can fit the segmentation process well. Specifically, at the beginning of the training, the loss value
decreases greatly, which indicates that the learning rate set by us on the Cityscapes or CamVid dataset is suitable for
the gradient decline process. The loss value on Cityscapes datasets tends to be flat at epoch = 200, and then starts to
decline, which indicates that our learning process is continuing. Because this dataset is very large, it can continue to
learn more useful information. On the CamVid dataset, when the epoch is 200, the loss curve has become flat. This is
due to the tiny size of the CamVid dataset, and most of the features of the dataset have been learned at this time.
From the Figure 6, we can see that there are many burrs on the loss curve of the Cityscapes dataset, and the fluctua-
tion frequency is relatively high. This is because under the same experimental hardware conditions, the batchsize we
set on the Cityscapes dataset is relatively small, causing significant fluctuations. The CamVid dataset is relatively
small, and the batchsize we set for it is larger, so the fluctuation frequency of the loss curve is smaller.

Average training loss vs epochs Average training loss vs epochs
1.6
1.6 1 1.4
1.5 1 1.2 A
£ 14 £ 10
513, 5 081
. :
O 1.2 O 0.6 A
1.1 4 0.4 1
1.0 1 0.2 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Epochs Epochs

Figure 6. Loss curves of HDGNet on Cityscapes and CamVid datasets.

The proposed method’s accuracy is assessed using the mean Intersection over Union (mloU), a typical measure
of semantic segmentation, to give the average of the ratio of the intersection and union of the two sets of all category
prediction results and the ground truth, calculated as follows:

k

1 Dii
mloU = — (12)
k ,z:o: Z_I;:opij + Zl;:opji — Dii

where p;; represents the number of pixels whose real value is i and is predicted to be j, & is the number of class.

Algorithm efficiency is measured by running time and frames per second (FPS). Operation time refers to the
time required for the network to complete the segmentation of a single image. FPS represents the number of images
the network completes semantic segmentation per second.
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6.2. Ablation Study

In this section, we prove the effectiveness of the proposed network through some ablation experiments, which
are based on Cityscapes datasets. Figure 8 shows the segmentation visualization results of HDGNet using different
modules to prove the effectiveness of each module. For both the context fusion module and the attention module, we
adopt dilation rates of [1, Figure 7. Segmentation visualization based on different dilation group settings 2, 5], [1, 2,
51,11, 2,51,13,5,71, 3,5, 71, [3, 5, 71, [5, 9, 111, [5, 9, 11], [5, 9, 11] for ablation experiments. Figure 8(a)(b) are the
segmentation visualization result using different context fusion modules and different attention modules, respectively.
In the ground truth, the highlighted borders are used to mark the parts with large gaps in the Cityscapes dataset after
using different modules. The black parts represent the categories that are ignored in semantic segmentation.

Input image

&

Ground truth

3.

HDGNet (R=[1,2,4]%3,[4.8,12]
*3,[8,12,16]x3)

2}

HDGNet (R=[1,2,5]%3,3,5.7]
x3,[5,9,11]x3)

Figure 7. Segmentation visualization based on different dilation group settings.

i 3 < 1
Input image . :

Ground truth

Concat . ECABIlock -

(a) Context fusion module (b) Attention module

Figure 8. Segmentation visualization results of HDGNet using different modules.

Context Fusion Module. To investigate the impact of contextual features on segmentation accuracy, we first
discard the influence of attention module to conduct experiments. Multi-scale context information is very important
for the pixel-level classification task. In terms of context fusion, as can be seen from Table 1(a), feature concatena-
tion has more advantages than feature adding. Although feature concatenation will bring some redundant parameters,
there is no obvious loss in training speed. Long-distance skip connections are also often used in semantic segmenta-
tion networks to compensate for information loss and reduce the issue of disappearing gradients. To cut down on the
amount of parameters, we use feature adding in the skip layer connection. The features of the two middle layers of
the network are respectively upsampled and added together to form the final output features. Therefore, in order to
strike a trade-off between the segmentation precision and inference speed, the residual connection of input and output
is performed by feature concatenation in HDGModule, and we use feature adding in the skip layer connection as the
final setting.

Attention Module. The channel attention module is used to capture channel characteristics. Table 1(b) shows
the effectiveness of the channel attention module, adding SEBlock can bring about 1.71% improvement in accuracy,
while using ECABlock can get a more significant improvement of 2.06% in accuracy with fewer parameters. Experi-
mental results show that by utilizing the attention module we can obtain better segmentation performance without
improving the parameter quantity.
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Table 1 Results of ablation study based on cityscapes validation set

Model add  concat  SEBlock ECABlock mloU(%) Parameters(M)
(a)context fusion module
HDGNet N x x x 65.59 0.34
HDGNet x \ x x 69.24 0.68
(b)attention module
HDGNet x S «/ x 70.95 0.69
HDGNet x S x v 71.30 0.68
(c)dilation rate
HDGNet(R = [1,2,3]%3,[5,7,9]1x3,[11,13,17] x3) X J x \ 70.49 0.68
HDGNet(R = ([1,2.51,[3,5,71,[5,9, 11]) X 3) x J x v 70.79 0.68
HDGNet(R = [1,2,4]x3,[4,8,12] x3,[8,12,16] x3) X J x y 69.29 0.69
HDGNet(R = [1,2,5]1%3,[3,5,71%3,[5,9, 111 x3) x J x v 71.30 0.68

Dilation Rate. We can draw a conclusion from the hybrid dilated convolution theory that the dilation rate in
each block must not have a common divisor that is higher than 1, and it should be set to a gradually increasing zigzag
structure. At the same time, the dilation rate of mutually prime numbers has a better effect. Therefore, we use an
increasing dilation rate sequence in the hybrid dilated grouping convolution block, and the dilation rates are [1, 2, 5],
[1,2,5],[1,2,5), 13,5, 71, (3,5, 71, [3, 5, 71, [5, 9, 11], [5, 9, 11], [5, 9, 11]. In order to study the effectiveness of the
dilation rate parameter sequence scheme, we carry out different dilation rate parameter sequences for comparison, as
shown in Table 1(c). When the dilation rate is set to [1, 2, 4], [1, 2, 4], [1, 2, 4], [4, 8, 12], [4, 8, 12], [4, 8, 12], [8, 12,
16], [8, 12, 16], [8, 12, 16], the common divisor of the dilation rate is greater than 1, and the segmentation accuracy is
reduced by 2.01%. Moreover, in the segmentation visualization based on different dilation group settings, the experi-
mental results of the second group of sequences are obviously better than the first group. From the second column of
Figure 7, we can see that in the segmentation of people and bicycles, the dilation rate sequence of the first group has a
common divisor greater than 1, so in the process of capturing multi-scale information, the dilated convolution opera-
tion with a dilation rate of 4 and 2 capture repeated spatial information, resulting in discontinuous spatial information
and grid effect. The second set of sequences we set can increase the diversity of receptive fields to a greater extent
and build a diversity feature map. Therefore, in order to avoid grid effect, a set of dilation rates must not contain a
common divisor that is higher than 1. In our network, the assignment of dilation rate follows a sawtooth wave-like
heuristic: the dilation rate of the first group is set to 1, 2, 5, and the next group is set to 3, 5, and 7 in the same
repeated mode. The overall dilation rate is gradually increasing. By doing so, the final feature map can access effec-
tive information from a wider range. In addition, we also carry out two other sets of dilation rate sequence experi-
ments. In our network, neither a larger dilation rate nor a cross dilation rate improved the experimental results. By
analyzing the results, it was verified that our settings can lead to better performance.

6.3. Comparison with State-Of-The-Arts

To further validate the effectiveness and generalization of the lightweight network suggested in this article, we
compare HDGNet with some existing semantic segmentation methods from different perspectives. The experiments
are conducted on the Cityscapes and Camvid datasets. The evaluation results of the proposed algorithm on the above
two datasets are first reported, and then using the same conditions, our model is contrasted with alternative semantic
segmentation models. The comparison results are shown in Table 3 and 4, and “Pretrain” indicates whether the model
has pre-training.

Accuracy and Parameter Comparisons. Our HDGNet exhibits good segmentation performance on two chal-
lenging datasets with fewer model parameters. On the Cityscapes dataset, the comparison results with other semantic
segmentation algorithms are shown in Table 2 and 3. HDGNet achieves 70.5% in mloU with only 680,000 parame-
ters on the Cityscapes test set, outperforming existing real-time semantic segmentation algorithms. Table 2 lists the
IoU of a single class in the Cityscapes test set, showing good segmentation performance in some classes. Compared
to ICNet, we have significant accuracy gains in some classes with large areas. For instance, the IoU of Wall increases
from 43.2% to 49.0%. In some categories with few training samples or small areas, our HDGNet’s performance is
also better than ICNet, such as Train, Bus, Fence, Sky, Pedestrian and Rider.

Generally speaking, the more parameters, the more complex the model is. Most large models have a huge
amount of redundant parameters. Table 3 shows that HDGNet occupies only about 2.6% of ICNet in terms of model
parameters without pre-trained model, but the segmentation accuracy of our network has increased by 1% compared
with ICNet. Although FSFNet's inference is faster than ours, it is less accurate and has 140,000 more parameters than
our model. While EdgeNet outperformed us by 0.5% in accuracy, our model can process 16 more frames per second
than it does in terms of inference speed. DFANet has a slightly higher speed, but it takes 11 times as many parame-
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ters as our model and its accuracy is slightly lower. In short, the parameters and GFLOPs in Table 3 show that our
model can achieve a certain segmentation accuracy with less parameters and low model complexity.

Table2 Per-class loU(%) based on Cityscapes test set

Methods Roa Sid Bui Wal Fen Pol TIli TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic Cla Cat
SegNet [21] 964 732 84 284 29 35.7 39.8 45.1 87 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 358 51.9 57 79.1
ENet [19] 96.3 742 75 322 332 434 341 44 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.3 80.4
ESPNet [26] 97 775 762 35 36.1 45 35.6 463 90.8 63.2 92.6 67 409 92.3 38.1 52.5 50.1 41.8 57.2 60.3 82.2
CGNet [42] 95.5 78.7 88.1 40 43 54.1 59.8 63.9 89.6 67.6 92.9 749 549 90.2 44.1 59.5 252 473 60.2 648 —
ERFNet [20] 97.7 81 89.8 425 48 56.3 59.8 65.3 91.4 68.2 94.2 76.8 57.1 92.8 50.8 60.1 51.8 47.3 61.7 68 86.5
ICNet [25] 97.1 79.2 89.7 43.2 489 61.5 60.4 63.4 91.5 68.3 93.5 74.6 56.1 92.6 51.3 72.7 51.3 53.6 70.5 69.5 86.4
HDGNet(ours) 96.3 80.8 88.8 49 50.5 58.6 61.7 66.1 914 69 943 80 60.5 93.7 51.4 70.5 56.9 52.8 67.4 70.5 86.9

Table 3 Evaluation results based on the cityscapes test set

Methods Pretrain InputSize mloU(%) FPS GPU Parameters(M) GFLOPs

SegNet [21] ImageNet 360 % 640 56.1 14.6 TitanX 29.5 286
ENet [19] No 512x1024 58.3 76.9 TitanX 0.36 4.4
FSSNet [43] No 512x1024 58.8 51 TitanXp 0.2 -
ESPNet [26] No 512x 1024 60.3 112 TitanX 0.36 4.7
NDNet [44] No 512x1024 61.1 101.1 Titan X 0.5 35
ContextNet [45] No 1024 x 2048 66.1 18.3 TitanX 0.85 -
EDANet [32] No 512x 1024 67.3 81.3 TitanX 0.68 8.95
ADSCNet [46] No - 67.5 76.9 - - -
ERFNet [20] No 512x1024 68 42 TitanX 2.1 26.86
BSDNet-Xception39 [47] No 512x 1024 68.3 84.6 RTX 2070 1.2 3.45
BiseNet [27] ImageNet 768 x 1536 68.4 106 TitanXp 5.8 14.8
FSFNet [48] No 1024 x 2048 69.1 203 1080Ti 0.82 13.5
DSNet [49] coarse 360 x 640 69.3 100 1080Ti 0.9 -
ICNet [25] ImageNet 1024 x 2048 69.5 30.3 TitanX 26.5 28.3
AGLNet [50] No 512x1024 70.1 52 1080Ti 1.12 13.88
Farsee [51] ImageNet 512x 1024 70.2 68.5 TitanX - -
DFANet [52] ImageNet 512x 1024 70.3 160 TitanX 7.8 1.7
EdgeNet [53] No 512x1024 71 31.4 TitanX - -
HDGNet(ours) No 512x1024 70.5 48 1080Ti 0.68 10.69

To demonstrate that our network is effective not only in high-resolution images, such as Cityscapes dateset, but
also in low-resolution images, we conduct experiments in the CamVid datasets. It can process 360 x 480 CamVid
images at a speed of 110FPS. As shown in 4, on the CamVid test set, our HDGNet achieves 65.7% mloU, which is
better than most current semantic segmentation algorithms. ICNet sacrifices a huge number of model parameters in
exchange for accuracy. Although its accuracy is improved slightly, it takes about 39 times as many parameters as our
model. As seen in Tables 3 and 4, our network successfully strikes a trade-off between inference speed and precision.

Table4 Evaluation results based on the CamVid test set

Methods Pretrain mloU(%) Parameters(M)
ENet [19] No 51.3 0.36
ESPNet [26] No 55.6 0.36
SegNet [21] ImageNet 55.6 29.5
FCN-8s [15] ImageNet 57 134.5
NDNet [44] No 57.2 0.5
EFSNet [55] No 60.7 0.1
BSDNet-Xception39 [47] No 63.9 1.2
DFANet [52] ImageNet 64.7 7.8
Dilation8 [56] ImageNet 65.3 140.8
CGNet [42] No 65.6 0.5
BiseNet [27] ImageNet 65.6 5.8
ICNet [25] ImageNet 67.1 26.5
HDGNet(ours) No 65.7 0.68

Speed Comparison. The speed experiments compared with other state-of-the-art methods refer to DABNet
[54]. For the faimess of the experiment, a single 1080Ti GPU is utilized for all speed experiments, and conduct
experiments in a unified Pytorch framework. Table 5 shows the comparison of inference speed between HDGNet and
other existing networks using full, half, and quarter resolution of images in Cityscapes respectively. The HDGNet can
process a 512x 1024 image at a speed of 48FPS. Although ESPNet is faster than HDGNet, its accuracy on
Cityscapes datasets is 10.2% lower than ours, sacrificing too much accuracy. The speed comparison experiments
show that our HDGNet can not only process low-resolution images, but also hign-resolution images at a relatively
fast speed.
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Table5 Speed comparison (all operations on a single GTX 1080T1)

GTX 1080Ti
256512 512x1024 1024 x 2048
Model

ms fps ms fps ms fps
SegNet [21] 16 64.2 56 17.9 - -
ERFNet [20] 7 147.8 21 48.2 74 13.5
ENet [19] 10 99.8 13 74.9 44 22.9
ICNet [25] 9 107.9 15 67.2 40 25.1
ESPNet [26] 5 182.5 9 115.2 30 333
HDGNet(ours) 9 112 21 48 80 12.6

The network proposed in this paper combines the advantages of factorization convolution, depthwise separable
convolution, dilated convolution and residual connection to build the core module of Hybrid Dilated Grouping Net-
work, that is, HDG module. By taking advantage of the features of factorization convolution and depthwise separa-
ble convolution, the computing load of the module is reduced. At the same time, the HDG module is used to solve
the grid effect caused by traditional dilated convolution by setting different dilated rates, so as to better capture spatial
context information at different scales. In order to improve the performance of the network and enhance the ability of
feature expression, we introduce a lightweight attention module in the encoder stage of the network to capture the
information correlation between channels. Figure 9 demonstrates that our network has higher segmentation precision
than other methods with fewer parameters, and can achieve a certain inference speed, which well proves that our net-
work can balance the segmentation precision and inference speed.
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Figure 9. Speed, accuracy and parameters performance comparison on the Cityscapes test set.

7. Conclusions

We propose a real-time outdoor scene segmentation algorithm based on HDGNet, which maintains the image
segmentation accuracy while taking into account the lightness and real-time performance of the algorithm model. The
designed hybrid dilated grouping module uses factorization convolution, depth-wise separable convolution, and
dilated convolution to obtain more valid context information. To capture more channel features of the model, a chan-
nel attention module is introduced to capture the inter-channel information. In addition, the HDGNet has feature
branches from different stages, and skip-layer connections are used to connect features from distinct branches, so that
the shallow features and deep high-level semantic information are fused, which enhances the feature representation,
extremely promotes the interaction of local information and global information, and further optimizes the segmenta-
tion results. Experiments show that, compared with several other methods, our model can achieve a better balance
between efficiency and accuracy. We will investigate the scene semantic segmentation approach on the mobile plat-
form in future work to make the algorithm more suitable to completing the driving scene segmentation task.

Our method performs well on the Cityscapes and CamVid datasets, but there is room for further improvement
and optimization. First of all, since the proposed method is only tested on two types of samples, it is not suitable for
some specific samples. Therefore, we will try to combine the network with specific image targets in the future
research to improve its practical application effect. Secondly, the network structure designed in this paper is an asym-
metric structure of large encoder and small decoder, and the decoding level does not use complex modules to recover
image information, so there is still a lack of structural design in restoring image resolution. In the follow-up research,
the decoder can be more refined design to further improve the segmentation accuracy of the model. Finally, we will
study the semantic scene segmentation method on the mobile platform in the future, so as to make the algorithm more
suitable for the task of driving scene segmentation.
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