Downloads

Additional Files

Leonora Kona, Eleftherios Meletis, Georgios Mavraganis, Georgios Georgiopoulos, Olympia Lioupi, Evangelia Anifanti, Polychronis Kostoulas, & Konstantinos Pateras. Estimating the True Prevalence of Diabetes in Patients with Stroke. Journal of Cardiovascular and Metabolic Disease Epidemiology. 2025. doi: Retrieved from https://w3.sciltp.com/journals/jcmde/article/view/2505000597

Article

Estimating the True Prevalence of Diabetes in Patients with Stroke

Leonora Kona 1,*, Eleftherios Meletis 1, Georgios Mavraganis 2, Georgios Georgiopoulos 2,3,4,5, Olympia Lioupi 1, Evangelia Anifanti 1, Polychronis Kostoulas 1, and Konstantinos Pateras 1,

1 Laboratory of Epidemiology, Applied Artificial Intelligence & Biostatistics, Faculty of Public and One Health,
University of Thessaly, 431 00 Karditsa, Greece

2 Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 157 72 Athens, Greece

3 Department of Physiology, School of Medicine, University of Patras, 265 04 Patras, Greece

4 Institute of Cardiovascular Sciences, University College London (UCL), London WC1E 6BT, UK

5 School of Biomedical Engineering and Imaging Sciences, St Thomas Hospital, King’s College London,
London WC2R 2LS, UK

* Correspondence: leonorakona@gmail.com

† These authors contributed equally to this work.

Received: 9 December 2024; Revised: 4 April 2025; Accepted: 29 April 2025; Published: 6 May 2025

Abstract: Aims: This study aims to investigate challenges associated with diabetes prevalence estimates in stroke survivors, focusing on the issue of misclassification bias in diagnostic tests, and to propose measures for improving the accuracy of these estimates. Methods: The study examines the inherent misclassification biases associated with the diagnostic tests, including Fasting Blood Glucose (FBG), Oral Glucose Tolerance Test (OGTT), and Hemoglobin A1c (HbA1c), commonly used to identify diabetes in stroke survivors. To address misclassification biases, three parameter Bayesian latent class models are applied to delineate true prevalence from the apparent prevalence reported in studies, using FBG, OGTT, HbA1c as standard diagnostic tests for diabetes. Results: The results revealed discrepancies between apparent and true prevalence of diabetes in stroke patients, highlighting the influence of the sensitivity and specificity of each diagnostic test on prevalence estimates. Conclusions: Correcting misclassification biases in diabetes diagnostic tests is crucial for accurate prevalence estimates in stroke survivors, which is necessary for proper diagnosis and patient care. The study underscores the need for future research to address data biases and uncertainties in diagnostic test measures, which will optimize the accuracy of diabetes diagnosis in this vulnerable population.

Keywords:

diabetes stroke apparent prevalence true prevalence diagnostic test

References

  1. Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. https://doi.org/10.1161/STR.0b013e318296aeca.
  2. GBD 2021 Stroke Risk Factor Collaborators. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. https://doi.org/10.1016/S1474-4422(24)00369-7.
  3. Bechtsopoulou, S. Compliance with Medication in Patients with Ischemic Stroke. Master’s Thesis, University of Thessaly, Larisa, Greece, 2016. https://doi.org/10.26253/heal.uth.4485.
  4. Kaul, K.; Tarr, J.M.; Ahmad, S.I.; et al. Introduction to Diabetes Mellitus. In Diabetes: An Old Disease, a New Insight; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–11. https://doi.org/10.1007/978-1-4614-5441-0_1.
  5. Diabetes. WHO. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 20 July 2024).
  6. Diabetes Tests. CDC. Available online: https://www.cdc.gov/diabetes/diabetes-testing/index.html (accessed on 15 May 2024).
  7. Mosenzon, O.; Cheng, A.Y.; Rabinstein, A.A.; et al. Diabetes and Stroke: What Are the Connections? J. Stroke 2023, 25, 26–38. https://doi.org/10.5853/jos.2022.02306.
  8. Hill, M.D. Stroke and Diabetes Mellitus. Handb. Clin. Neurol. 2014, 126, 167–174. https://doi.org/10.1016/B978-0-444-53480-4.00012-6.
  9. Lau, L.H.; Lew, J.; Borschmann, K.; et al. Prevalence of Diabetes and Its Effects on Stroke Outcomes: A Meta-Analysis and Literature Review. J. Diabetes Investig. 2019, 10, 780–792. https://doi.org/10.1111/jdi.12932.
  10. Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. https://doi.org/10.1161/STR.0000000000000375.
  11. Principles of Epidemiology Lesson 3- Section 2. CDC. Available online: https://archive.cdc.gov/www_cdc_gov/csels/dsepd/ss1978/lesson3/section2.html (archived on 20 July 2024).
  12. Hewitt, J.; Castilla Guerra, L.; Fernández-Moreno, M.D.C.; et al. Diabetes and Stroke Prevention: A Review. Stroke Res. Treat. 2012, 2012, 673187. https://doi.org/10.1155/2012/673187.
  13. Habibzadeh, F.; Habibzadeh, P.; Yadollahie, M. The Apparent Prevalence, the True Prevalence. Biochem. Med. 2022, 32, 163–167. https://doi.org/10.11613/BM.2022.020101.
  14. Pham, A.; Cummings, M.; Lindeman, C.; et al. Recognizing Misclassification Bias in Research and Medical Practice. Fam. Pract. 2019, 36, 804–807. https://doi.org/10.1093/fampra/cmy130.
  15. Selvin, E.; Coresh, J.; Shahar, E.; et al. Glycaemia (Haemoglobin A1c) and Incident Ischaemic Stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Lancet Neurol. 2005, 4, 821–826. https://doi.org/10.1016/S1474-4422(05)70227-1.
  16. Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling [Computer software]. Available online: https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf (accessed on 20 July 2024).
  17. Pateras, K.; Kostoulas, P. tPRiors: A Tool for Prior Elicitation and Obtaining Posterior Distributions of True Disease Prevalence. BMC Med. Res. Methodol. 2022, 22, 91. https://doi.org/10.1186/s12874-022-01557-1.
  18. Pateras, K.; Kostoulas, P. PriorGen: Package for Generating Prior Distributions in Bayesian Analysis. R Foundation for Statistical Computing. Available online: https://www.researchgate.net/publication/369830515_Package_’PriorGen_20’_Generates_Prior_Distributions_for_Proportions (accessed on 3 April 2023).
  19. Berkman, N.D.; Wallace, I.; Watson, L.; et al. Screening for Speech and Language Delays and Disorders in Children Age 5 Years or Younger: A Systematic Review for the US Preventive Services Task Force; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2015.
  20. Kaur, G.; Lakshmi, P.V.M.; Rastogi, A.; et al. Diagnostic Accuracy of Tests for Type 2 Diabetes and Prediabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0242415. https://doi.org/10.1371/journal.pone.0242415.
  21. Aekplakorn, W.; Tantayotai, V.; Numsangkul, S.; et al. Detecting Prediabetes and Diabetes: Agreement Between Fasting Plasma Glucose and Oral Glucose Tolerance Test in Thai Adults. J. Diabetes Res. 2015, 2015, 396505. https://doi.org/10.1155/2015/396505.
  22. Petticrew, M.; Sowden, A.; Lister-Sharp, D. False-Negative Results in Screening Programs: Medical, Psychological, and Other Implications. Int. J. Technol. Assess. Health Care 2001, 17, 164–170. https://doi.org/10.1017/S0266462300105021.
  23. Yong, S.E.F.; Wong, M.L.; Voo, T.C. Screening is Not Always Healthy: An Ethical Analysis of Health Screening Packages in Singapore. BMC Med. Ethics 2022, 23, 57. https://doi.org/10.1186/s12910-022-00798-5.
  24. McCowen, K.C.; Malhotra, A.; Bistrian, B.R. Stress-Induced Hyperglycemia. Crit. Care Clin. 2001, 17, 107–124. https://doi.org/10.1016/S0749-0704(05)70154-8.
  25. Stead, L.G.; Jain, A.; Bellolio, M.F.; et al. Emergency Department Hyperglycemia as a Predictor of Early Mortality and Worse Functional Outcome after Intracerebral Hemorrhage. Neurocrit. Care 2010, 13, 67–74. https://doi.org/10.1007/s12028-010-9355-0.
  26. Cardino, M.J.T.; Josol, C.V.; Guillermo, I.M.; et al. Prevalence and Outcomes of Unrecognized Diabetes Mellitus and Prediabetes among Acute Stroke Patients with Admission Hyperglycemia at the Philippine General Hospital: DASH Study. Philipp. J. Int. Med. 2011, 49, 79–87.
  27. Matz, K.; Keresztes, K.; Tatschl, C.; et al. Disorders of Glucose Metabolism in Acute Stroke Patients: An Underrecognized Problem. Diabetes Care 2006, 29, 792–797. https://doi.org/10.2337/diacare.29.04.06.dc05-1818.
  28. Gray, C.S.; Scott, J.F.; French, J.M.; et al. Prevalence and Prediction of Unrecognised Diabetes Mellitus and Impaired Glucose Tolerance Following Acute Stroke. Age Ageing 2004, 33, 71–77. https://doi.org/10.1093/ageing/afh026.
  29. Kostoulas, P. The Hotline Project. Available online: https://sites.google.com/view/the-hotline-project/software (accessed on 5 April 2023).