Downloads

Galib, G., Silva, F. J. G., Pedroso, A. F. V., Campilho, R. D. S. G., Lucas, R., & Rita Sales-Contini. A Comprehensive Review of Additive Manufacturing Technologies for Composite Materials. Journal of Mechanical Engineering and Manufacturing. 2025. doi: Retrieved from https://w3.sciltp.com/journals/jmem/article/view/555

Review

A Comprehensive Review of Additive Manufacturing Technologies for Composite Materials

Gabriela Galib 1, Francisco J. G. Silva 1,2,*, André F. V. Pedroso 1,3, Raul D. S. G. Campilho 1,2, Rafael Lucas 1,4 and Rita Sales-Contini 1,5

1 CIDEM, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal

2 LAETA-INEGI, Associate Laboratory for Energy, Transports and Aerospace, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal

3 Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 400, 4200-465 Porto, Portugal

4 School of Engineering and Sciences, São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil

5 Aeronautical Structures Laboratory, Technological College of São José dos Campos Prof. Jessen Vidal (FATEC), São José dos Campos 12247-014, São Paulo, Brazil

* Correspondence: fgs@isep.ipp.pt; Tel.: +351-22-83-40-500

Received: 15 October 2024; Revised: 6 February 2025; Accepted: 10 March 2025; Published: 17 March 2025

Abstract: Additive manufacturing (AM) is a term used to describe technologies that utilize 3D model data to create physical objects by depositing materials in the form of powder, wire and/or resin. One of the applications of AM is in manufacturing composites, where two or more materials are combined to form a helpful engineering material. This review article covers the most common AM technologies used in composite manufacturing, including Laminated Object Manufacturing (LOM), Fused Deposition Modelling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), and Direct Energy Deposition (DED). The work intends to provide a structured set of information for beginners or practitioners, helping to acquire the essential knowledge in this field in just a document, and this represents its main novelty, as no other articles have been found to provide a deep but synthetic set of information about this subject. The article describes each process’s main characteristics, advantages, and disadvantages and provides a brief SWOT analysis, offering examples of their use. In summary, AM of composite materials has the potential to transform 3D printing from a prototyping method into a robust manufacturing technique. However, there is no universally superior AM technique, and the most appropriate method must be selected for each application. 

Keywords:

additive manufacturing composites composite manufacturing SWOT analysis

References

  1. ISO/ASTM 52900:2021(E); Additive Manufacturing—General Principles—Fundamentals and Vocabulary. IOF Standardization: Geneva, Switzerland, 2021. Available: https://www.iso.org/standard/74514.html (accessed on 1 October 2025).
  2. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 1-Introduction and Basic Principles. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–21.
  3. Hossain, M.; Khan, M.; Khan, I.; et al. Technology of Additive Manufacturing: A Comprehensive Review. Kufa J. Eng. 2024, 15, 108–146. https://doi.org/10.30572/2018/kje/150108.
  4. Tamez, M.B.A.; Taha, I. A review of additive manufacturing technologies and markets for thermosetting resins and their potential for carbon fiber integration. Addit. Manuf. 2021, 37, 101748. https://doi.org/10.1016/j.addma.2020.101748.
  5. Sasson, A.; Johnson, J. The 3D Printing Order: Variability, Supercenters and Supply Chain Reconfigurations. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 82–94. https://doi.org/10.1108/IJPDLM-10-2015-0257.
  6. Kumar, S.; Kruth, J.P. Composites by rapid prototyping technology. Mater. Des. 2010, 31, 850–856. https://doi.org/10.1016/j.matdes.2009.07.045.
  7. Chen, N.; He, C.; Pang, S. Additive manufacturing of energetic materials: Tailoring energetic performance via printing. J. Mater. Sci. Technol. 2022, 127, 29–47. https://doi.org/10.1016/j.jmst.2022.02.047.
  8. Zhang, K.; Meng, Q.; Zhang, X.; et al. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography. J. Mater. Sci. Technol. 2022, 118, 144–157. https://doi.org/10.1016/j.jmst.2021.11.060.
  9. Yang, Y.; Li, X.; Chu, M.; et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv. 2019, 5, eaau9490, https://doi.org/10.1126/sciadv.aau9490.
  10. Sun, J.; Ye, D.; Zou, J.; et al. A review on additive manufacturing of ceramic matrix composites. J. Mater. Sci. Technol. 2023, 138, 1–16. https://doi.org/10.1016/j.jmst.2022.06.039.
  11. Zhang, X.; Zhang, K.; Zhang, L.; et al. Additive manufacturing of cellular ceramic structures: From structure to structure–function integration. Mater. Des. 2022, 215, 110470. https://doi.org/10.1016/j.matdes.2022.110470.
  12. Lakhdar, Y.; Tuck, C.; Binner, J.; et al. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. https://doi.org/10.1016/j.pmatsci.2020.100736.
  13. Pelanconi, M.; Barbato, M.; Zavattoni, S.; et al. Thermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer. Mater. Des. 2019, 163, 107539. https://doi.org/10.1016/j.matdes.2018.107539.
  14. Raynaud, J.; Pateloup, V.; Bernard, M.; et al. Hybridization of additive manufacturing processes to build ceramic/metal parts: Example of LTCC. J. Eur. Ceram. Soc. 2020, 40, 759–767. https://doi.org/10.1016/j.jeurceramsoc.2019.10.019.
  15. Paredes, C.; Martínez-Vázquez, F.J.; Pajares, A.; et al. Co-continuous calcium phosphate/polycaprolactone composite bone scaffolds fabricated by digital light processing and polymer melt suction. Ceram. Int. 2021, 47, 17726–17735. https://doi.org/10.1016/j.ceramint.2021.03.093.
  16. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 8-Binder Jetting. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 237–252.
  17. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 10-Directed Energy Deposition. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 285–318.
  18. Guimarães, R.P.M.; Pixner, F.; Enzinger, N.; et al. Chapter 2-Directed energy deposition processes and process design by artificial intelligence. In Advances in Metal Additive Manufacturing; Salunkhe, S., Amancio-Filho, S.T., Davim, J.P., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 105–146.
  19. Li, J.C.; Lin, X.; Kang, N.; et al. Microstructure, tensile and wear properties of a novel graded Al matrix composite prepared by direct energy deposition. J. Alloys Compd. 2020, 826, 154077. https://doi.org/10.1016/j.jallcom.2020.154077.
  20. Kutlu, Y.; Wencke, Y.L.; Luinstra, G.A.; et al. Directed Energy Deposition of PA12 carbon nanotube composite powder using a fiber laser. Procedia CIRP 2020, 94, 128–133. https://doi.org/10.1016/j.procir.2020.09.025.
  21. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 6-Material Extrusion. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 171–201.
  22. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 7-Material Jetting. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 203–235.
  23. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 9-Sheet Lamination. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 253–283.
  24. Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 4-Vat Photopolymerization. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 77–124.
  25. ASTM D 3878-16; Standard Terminology for Composite Materials. A. International: Harrisburg, PA, USA, 2016.
  26. Yang, Y.; Boom, R.; Irion, B.; et al. Recycling of composite materials. Chem. Eng. Process. : Process Intensif. 2012, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007.
  27. Adams, R.D.; Collins, A.; Cooper, D.; et al. Recycling of reinforced plastics. In Structural Integrity and Durability of Advanced Composites; Beaumont, P.W.R., Soutis, C., Hodzic, A., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 763–792.
  28. Rajak, D.K.; Pagar, D.D.; Kumar, R.; et al. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068.
  29. Harper, L.; Clifford, M. 1-Introduction. In Design and Manufacture of Structural Composites; Harper, L., Clifford, M., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 3–17.
  30. Miracle, D.B.; Committee, A.I.H.; Donaldson, S.L. ASM Handbook Composites, 10th ed.; ASM International: Almere, The Netherlands, 2001.
  31. Yang, J.; Li, B.; Liu, J.; et al. Application of Additive Manufacturing in the Automobile Industry: A Mini Review. Processes 2024, 12, 1101.
  32. Chattopadhyay, S.; Mahapatra, S.D.; Mandal, N.K. Advancements and challenges in additive manufacturing: A comprehensive review. Eng. Res. Express 2024, 6, 012505. https://doi.org/10.1088/2631-8695/ad30b1.
  33. Romanenko, V.; Nazarenko, O. Comparative analysis of modern technologies of additive production. Syst. Res. Energy 2024, 2, 84–96. https://doi.org/10.15407/srenergy2024.02.084.
  34. Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 2017, 182, 36–53. https://doi.org/10.1016/j.compstruct.2017.08.088.
  35. Dermeik, B.; Travitzky, N. Laminated Object Manufacturing of Ceramic-Based Materials. Adv. Eng. Mater. 2020, 22, 2000256. https://doi.org/10.1002/adem.202000256.
  36. Chang, B.; Parandoush, P.; Li, X.; et al. Ultrafast printing of continuous fiber-reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonic-assisted laminated object manufacturing. Polym. Compos. 2020, 41, 4706–4715. https://doi.org/10.1002/pc.25744.
  37. Bai, J.; Sun, J.; Binner, J. Chapter 7-Additive Manufacturing of Ceramics: Materials, Characterization and Applications. In Additive Manufacturing: Materials, Functionalities and Applications; Zhou, K., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 245–331.
  38. Obikawa, T.; Yoshino, M.; Shinozuka, J. Sheet steel lamination for rapid manufacturing. J. Mater. Process. Technol. 1999, 89–90, 171–176. https://doi.org/10.1016/S0924-0136(99)00027-8.
  39. Brown, J.H.; Colton, J.S. A machine system for the rapid production of composite structures. Polym. Compos. 2000, 21, 124–133. https://doi.org/10.1002/pc.10171.
  40. Dizon, J.R.C.; Espera, A.H.; Chen, Q.; et al. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002.
  41. Razavykia, A.; Brusa, E.; Delprete, C.; et al. An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. Materials 2020, 13, 3895.
  42. Klosterman, D.A.; Chartoff, R.P.; Agarwala, M.K.; et al. Direct Fabrication of Polymer Composite Structures with Curved LOM; The University of Texas at Austin: Austin, TX, USA, 1999.
  43. Klosterman, D.; Chartoff, R.; Graves, G.; et al. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1165–1174. https://doi.org/10.1016/S1359-835X(98)00088-8.
  44. Sonmez, F.O.; Hahn, H.T. Thermomechanical analysis of the laminated object manufacturing (LOM) process. Rapid Prototyp. J. 1998, 4, 26–36. https://doi.org/10.1108/13552549810197541.
  45. Parandoush, P.; Tucker, L.; Zhou, C.; et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater. Des. 2017, 131, 186–195. https://doi.org/10.1016/j.matdes.2017.06.013.
  46. Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des. 2015, 83, 768–776. https://doi.org/10.1016/j.matdes.2015.06.053.
  47. Bureau, M.N.; Denault, J. Fatigue resistance of continuous glass fiber/polypropylene composites: Consolidation dependence. Compos. Sci. Technol. 2004, 64, 1785–1794. https://doi.org/10.1016/j.compscitech.2004.01.016.
  48. Thomason, J.L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1641–1652. https://doi.org/10.1016/S1359-835X(02)00179-3.
  49. Matsuzaki, R.; Ueda, M.; Namiki, M.; et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 23058. https://doi.org/10.1038/srep23058.
  50. Demoly, F.; André, J.-C. 8-3D stereolithography of polymer matrix composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 247–280.
  51. Zhang, Y.; Han, J.; Zhang, X.; et al. Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials. Mater. Sci. Eng. A 2001, 299, 218–224. https://doi.org/10.1016/S0921-5093(00)01377-0.
  52. Solomon, I.J.; Sevvel, P.; Gunasekaran, J. A review on the various processing parameters in FDM. Mater. Today Proc. 2021, 37, 509–514. https://doi.org/10.1016/j.matpr.2020.05.484.
  53. Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. https://doi.org/10.1108/RPJ-01-2013-0012.
  54. Jin, Y.-A.; Li, H.; He, Y.; et al. Quantitative analysis of surface profile in fused deposition modelling. Addit. Manuf. 2015, 8, 142–148. https://doi.org/10.1016/j.addma.2015.10.001.
  55. Acierno, D.; Patti, A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials 2023, 16, 7664.
  56. Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529.
  57. Dinwiddie, R.; Kunc, V.; Lindal, J.; et al. Infrared Imaging of the Polymer 3D-Printing Process. SPIE 2014, 9105, 910502.
  58. Safari, F.; Kami, A.; Abedini, V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties. Polym. Polym. Compos. 2022, 30, 09673911221098734. https://doi.org/10.1177/09673911221098734.
  59. Zhong, W.; Li, F.; Zhang, Z.; et al. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 2001, 301, 125–130. https://doi.org/10.1016/S0921-5093(00)01810-4.
  60. Gray, R.W.; Baird, D.G.; Helge Bøhn, J. Effects of processing conditions on short TLCP fiber reinforced FDM parts. Rapid Prototyp. J. 1998, 4, 14–25. https://doi.org/10.1108/13552549810197514.
  61. Ning, F.; Cong, W.; Qiu, J.; et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013.
  62. Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; et al. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. https://doi.org/10.1016/j.compscitech.2014.10.009.
  63. Tian, X.; Todoroki, A.; Liu, T.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100016. https://doi.org/10.1016/j.cjmeam.2022.100016.
  64. Li, N.; Li, Y.; Liu, S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 2016, 238, 218–225. https://doi.org/10.1016/j.jmatprotec.2016.07.025.
  65. Yu, T.; Ren, J.; Li, S.; et al. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 499–505. https://doi.org/10.1016/j.compositesa.2009.12.006.
  66. Tian, X.; Liu, T.; Yang, C.; et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. https://doi.org/10.1016/j.compositesa.2016.05.032.
  67. Compton, B.G.; Lewis, J.A. 3D-Printing of Lightweight Cellular Composites. Adv. Mater. 2014, 26, 5930–5935. https://doi.org/10.1002/adma.201401804.
  68. Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; et al. Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090. https://doi.org/10.1002/app.12496.
  69. Farahani, R.D.; Therriault, D.; Dubé, M.; et al. 6.13 Additive Manufacturing of Multifunctional Nanocomposites and Composites. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 380–407.
  70. Ziegmann, G.; Oehl, G.; Hefft, L.T. 1-Recent trends in “conventional” manufacturing of composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 1–36.
  71. Cicala, G.; Tosto, C. 2-Optimization of fused deposition modeling for short fiber reinforced composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 37–79.
  72. Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 2016, 153, 866–875. https://doi.org/10.1016/j.compstruct.2016.07.018.
  73. Mori, K.-I.; Maeno, T.; Nakagawa, Y. Dieless Forming of Carbon Fibre Reinforced Plastic Parts Using 3D Printer. Procedia Eng. 2014, 81, 1595–1600. https://doi.org/10.1016/j.proeng.2014.10.196.
  74. Zak, G.; Sela, M.N.; Yevko, V.; et al. Layered-Manufacturing of Fiber-Reinforced Composites. J. Manuf. Sci. Eng. 1999, 121, 448–456. https://doi.org/10.1115/1.2832702.
  75. Niendorf, K.; Raeymaekers, B. Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review. Adv. Eng. Mater. 2021, 23, 2001002. https://doi.org/10.1002/adem.202001002.
  76. Ngo, T.D.; Kashani, A.; Imbalzano, G.; et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012.
  77. Murphy, C.A.; Lim, K.S.; Woodfield, T.B.F. Next Evolution in Organ-Scale Biofabrication: Bioresin Design for Rapid High-Resolution Vat Polymerization. Adv. Mater. 2022, 34, 2107759. https://doi.org/10.1002/adma.202107759.
  78. Novotny, J.; Svobodova, Z.; Ilicova, M.; et al. Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays. Microchim. Acta 2024, 191, 442. https://doi.org/10.1007/s00604-024-06512-z.
  79. Caussin, E.; Moussally, C.; Le Goff, S.; et al. Vat Photopolymerization 3D Printing in Dentistry: A Comprehensive Review of Actual Popular Technologies. Materials 2024, 17, 950.
  80. Paral, S.K.; Lin, D.-Z.; Cheng, Y.-L.; et al. A Review of Critical Issues in High-Speed Vat Photopolymerization. Polymers 2023, 15, 2716.
  81. Khanlar, L.N.; Barmak, A.B.; Oh, Y.; et al. Marginal and internal discrepancies associated with carbon digital light synthesis additively manufactured interim crowns. J. Prosthet. Dent. 2023, 130, e101–e108. https://doi.org/10.1016/j.prosdent.2023.04.007.
  82. Santoliquido, O.; Camerota, F.; Ortona, A. The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components. Open Ceram. 2021, 5, 100059. https://doi.org/10.1016/j.oceram.2021.100059.
  83. Thohid Rayhan, M.; Islam, M.A.; Khan, M.; et al. Advances in additive manufacturing of nanocomposite materials fabrications and applications. Eur. Polym. J. 2024, 220, 113406. https://doi.org/10.1016/j.eurpolymj.2024.113406.
  84. Schittecatte, L.; Geertsen, V.; Bonamy, D.; et al. From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. 2023, 13, 357–377. https://doi.org/10.1557/s43579-023-00352-3.
  85. Waheed, S.; Cabot, J.M.; Macdonald, N.P.; et al. 3D printed microfluidic devices: Enablers and barriers. Lab A Chip 2016, 16, 1993–2013. https://doi.org/10.1039/C6LC00284F.
  86. Mukhangaliyeva, A.; Dairabayeva, D.; Perveen, A.; et al. Optimization of Dimensional Accuracy and Surface Roughness of SLA Patterns and SLA-Based IC Components. Polymers 2023, 15, 4038.
  87. Milovanović, A.; Milošević, M.; Mladenović, G.; et al. Experimental Dimensional Accuracy Analysis of Reformer Prototype Model Produced by FDM and SLA 3D Printing Technology. In Proceedings of the Experimental and Numerical Investigations in Materials Science and Engineering, Cham, Switzerland, 1 January 2018; pp. 84–95.
  88. He, F.; Khan, M. Effects of Printing Parameters on the Fatigue Behaviour of 3D-Printed ABS under Dynamic Thermo-Mechanical Loads. Polymers 2021, 13, 2362.
  89. Zhu, W.; Yan, C.; Shi, Y.; et al. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci. Rep. 2016, 6, 33780. https://doi.org/10.1038/srep33780.
  90. Karalekas, D.E. Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping. Mater. Des. 2003, 24, 665–670. https://doi.org/10.1016/S0261-3069(03)00153-5.
  91. Karalekas, D.; Antoniou, K. Composite rapid prototyping: Overcoming the drawback of poor mechanical properties. J. Mater. Process. Technol. 2004, 153–154, 526–530. https://doi.org/10.1016/j.jmatprotec.2004.04.019.
  92. Cheah, C.M.; Fuh, J.Y.H.; Nee, A.Y.C.; et al. Mechanical characteristics of fiber-filled photo-polymer used in stereolithography. Rapid Prototyp. J. 1999, 5, 112–119. https://doi.org/10.1108/13552549910278937.
  93. Vaneetveld, G.; Clarinval, A.M.; Dormal, T.; et al. Optimization of the formulation and post-treatment of stainless steel for rapid manufacturing. J. Mater. Process. Technol. 2008, 196, 160–164. https://doi.org/10.1016/j.jmatprotec.2007.05.017.
  94. Gupta, A.; Ogale, A.A. Dual curing of carbon fiber reinforced photoresins for rapid prototyping. Polym. Compos. 2002, 23, 1162–1170. https://doi.org/10.1002/pc.10509.
  95. Sun, J.; Chen, X.; Wade-Zhu, J.; et al. A comprehensive study of dense zirconia components fabricated by additive manufacturing. Addit. Manuf. 2021, 43, 101994. https://doi.org/10.1016/j.addma.2021.101994.
  96. Wang, W.; Sun, J.; Guo, B.; et al. Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions. J. Eur. Ceram. Soc. 2020, 40, 682–688. https://doi.org/10.1016/j.jeurceramsoc.2019.10.033.
  97. Chen, X.; Sun, J.; Guo, B.; et al. Effect of the particle size on the performance of BaTiO3 piezoelectric ceramics produced by additive manufacturing. Ceram. Int. 2022, 48, 1285–1292. https://doi.org/10.1016/j.ceramint.2021.09.213.
  98. Zeng, Q.; Yang, C.; Tang, D.; et al. Additive manufacturing alumina components with lattice structures by digital light processing technique. J. Mater. Sci. Technol. 2019, 35, 2751–2755. https://doi.org/10.1016/j.jmst.2019.08.001.
  99. Uiiah, I.; Cao, L.; Cui, W.; et al. Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles. J. Mater. Sci. Technol. 2021, 88, 99–108. https://doi.org/10.1016/j.jmst.2021.01.062.
  100. Pfaffinger, M.; Mitteramskogler, G.; Gmeiner, R.; et al. Thermal Debinding of Ceramic-Filled Photopolymers. Mater. Sci. Forum 2015, 825–826, 75–81. https://doi.org/10.4028/www.scientific.net/MSF.825-826.75.
  101. Safarian, A.; Subaşi, M.; Karataş, Ç. Reducing debinding time in thick components fabricated by powder injection molding. Presented at “7th International Powder Metallurgy Conference and Exhibition” (TPM-7), Gazi University, Ankara, Turkey. 24–28 June 2014. https://doi.org/10.3139/146.111212.
  102. Dietrich, K.; Diller, J.; Dubiez-Le Goff, S.; et al. The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4V during laser powder bed fusion (L-PBF). Addit. Manuf. 2020, 32, 100980. https://doi.org/10.1016/j.addma.2019.100980.
  103. Zak, G.; Haberer, M.; Park, C.B.; et al. Mechanical properties of short-fibre layered composites: Prediction and experiment. Rapid Prototyp. J. 2000, 6, 107–118. https://doi.org/10.1108/13552540010323583.
  104. Zhuo, P.; Li, S.; Ashcroft, I.A.; et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook. Compos. Part B Eng. 2021, 224, 109143. https://doi.org/10.1016/j.compositesb.2021.109143.
  105. Zak, G.; Chan, A.Y.F.; Park, C.B.; et al. Viscosity analysis of photopolymer and glass-fibre composites for rapid layered manufacturing. Rapid Prototyp. J. 1996, 2, 16–23. https://doi.org/10.1108/13552549610129773.
  106. Xiao, J.; Li, M.; Li, S.; et al. High-fidelity random fiber distribution algorithm based on fiber spreading process. Polym. Compos. 2023, 44, 4669–4681. https://doi.org/10.1002/pc.27430.
  107. Laurencin, T.; Dumont, P.J.J.; Orgéas, L.; et al. 3D real time and in situ observation of the fibre orientation during the plane strain flow of concentrated fibre suspensions. J. Non-Newton. Fluid Mech. 2023, 312, 104978. https://doi.org/10.1016/j.jnnfm.2022.104978.
  108. Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. https://doi.org/10.1108/13552540510573365.
  109. Shahzad, K.; Deckers, J.; Zhang, Z.; et al. Additive manufacturing of zirconia parts by indirect selective laser sintering. J. Eur. Ceram. Soc. 2014, 34, 81–89. https://doi.org/10.1016/j.jeurceramsoc.2013.07.023.
  110. Yehia, H.M.; Hamada, A.; Sebaey, T.A.; et al. Selective Laser Sintering of Polymers: Process Parameters, Machine Learning Approaches, and Future Directions. J. Manuf. Mater. Process. 2024, 8, 197.
  111. Tiwari, S.K.; Pande, S.; Agrawal, S.; et al. Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 2015, 21, 630–648. https://doi.org/10.1108/RPJ-03-2013-0027.
  112. Kruth, J.P.; Levy, G.; Klocke, F.; et al. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 2007, 56, 730–759. https://doi.org/10.1016/j.cirp.2007.10.004.
  113. Chua, C.K.; Leong, K.F.; Lim, C.S. Rapid Prototyping: Principles and Applications, 3rd ed.; World Scientific Publishing Company: Singapore, 2010.
  114. Kruth, J.P.; Van der Schueren, B.; Bonse, J.E.; et al. Basic Powder Metallurgical Aspects in Selective Metal Powder Sintering. CIRP Ann. 1996, 45, 183–186. https://doi.org/10.1016/S0007-8506(07)63043-1.
  115. Wiria, F.E.; Leong, K.F.; Chua, C.K.; et al. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007, 3, 1–12. https://doi.org/10.1016/j.actbio.2006.07.008.
  116. Khan, H.; Tarakçı, G.; Bulduk, M.; et al. Estimation of the compression strength and surface roughness of the as-built SLS components using weibull distribution. J. Adv. Manuf. Eng. 2021, 2, 1–6. https://doi.org/10.14744/ytu.jame.2021.00001.
  117. Kabore, B.W.; Estupinan Donoso, A.A.; Peters, B.; et al. Identification of optimal process parameters in selective laser sintering. In Proceedings of the International Conference on Simulation for Additive Manufacturing-Sim-AM, Pavia, Italy, 13 November 2019.
  118. Tan, K.H.; Chua, C.K.; Leong, K.F.; et al. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 2003, 24, 3115–3123. https://doi.org/10.1016/S0142-9612(03)00131-5.
  119. Kim, J.; Creasy, T.S. Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polym. Test. 2004, 23, 629–636. https://doi.org/10.1016/j.polymertesting.2004.01.014.
  120. Yan, C.; Hao, L.; Xu, L.; et al. Preparation, characterisation and processing of carbon fibre/polyamide-12 composites for selective laser sintering. Compos. Sci. Technol. 2011, 71, 1834–1841. https://doi.org/10.1016/j.compscitech.2011.08.013.
  121. Yuan, S.; Zheng, Y.; Chua, C.K.; et al. Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos. Part A Appl. Sci. Manuf. 2018, 105, 203–213. https://doi.org/10.1016/j.compositesa.2017.11.007.
  122. Razaviye, M.K.; Tafti, R.A.; Khajehmohammadi, M. An investigation on mechanical properties of PA12 parts produced by a SLS 3D printer: An experimental approach. CIRP J. Manuf. Sci. Technol. 2022, 38, 760–768. https://doi.org/10.1016/j.cirpj.2022.06.016.
  123. Murali, K.; Chatterjee, A.N.; Saha, P.; et al. Direct selective laser sintering of iron–graphite powder mixture. J. Mater. Process. Technol. 2003, 136, 179–185. https://doi.org/10.1016/S0924-0136(03)00150-X.
  124. Simchi, A.; Pohl, H. Direct laser sintering of iron–graphite powder mixture. Mater. Sci. Eng. A 2004, 383, 191–200. https://doi.org/10.1016/j.msea.2004.05.070.
  125. Maeda, K.; Childs, T.H.C. Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. J. Mater. Process. Technol. 2004, 149, 609–615. https://doi.org/10.1016/j.jmatprotec.2004.02.024.
  126. Gu, D.; Shen, Y. WC–Co particulate reinforcing Cu matrix composites produced by direct laser sintering. Mater. Lett. 2006, 60, 3664–3668. https://doi.org/10.1016/j.matlet.2006.03.103.
  127. Gåård, A.; Krakhmalev, P.; Bergström, J. Microstructural characterization and wear behavior of (Fe,Ni)–TiC MMC prepared by DMLS. J. Alloys Compd. 2006, 421, 166–171. https://doi.org/10.1016/j.jallcom.2005.09.084.
  128. Exner, H.; Horn, M.; Streek, A.; et al. Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Virtual Phys. Prototyp. 2008, 3, 3–11. https://doi.org/10.1080/17452750801907970.
  129. Yadroitsev, I.; Smurov, I. Surface Morphology in Selective Laser Melting of Metal Powders. Phys. Procedia 2011, 12, 264–270. https://doi.org/10.1016/j.phpro.2011.03.034.
  130. Leong, C.C.; Lu, L.; Fuh, J.Y.H.; et al. In-situ formation of copper matrix composites by laser sintering. Mater. Sci. Eng. A 2002, 338, 81–88. https://doi.org/10.1016/S0921-5093(02)00050-3.
  131. Evans, R.S.; Bourell, D.L.; Beaman, J.J.; et al. Rapid manufacturing of silicon carbide composites. Rapid Prototyp. J. 2005, 11, 37–40. https://doi.org/10.1108/13552540510573374.
  132. Sebbe, N.P.V.; Fernandes, F.; Sousa, V.F.C.; et al. Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review. Metals 2022, 12, 1874–1894.
  133. Vityaz, P.A.; Kheifetz, M.L.; Chizhik, S.A. 20-Synergetic technologies of direct layer deposition in aerospace additive manufacturing. In Additive Manufacturing for the Aerospace Industry; Froes, F., Boyer, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 427–447.
  134. Lewandowski, J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. https://doi.org/10.1146/annurev-matsci-070115-032024.
  135. Sibisi, P.N.; Popoola, A.P.I.; Arthur, N.K.K.; et al. Review on direct metal laser deposition manufacturing technology for the Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 2020, 107, 1163–1178. https://doi.org/10.1007/s00170-019-04851-3.
  136. Ortiz, I.; Alvarez, P.; Montealegre, M.A. Laser Metal Deposition (LMD) Toolpaths with Adaptive Capability for Complex Repairs and Coating Geometries. Key Eng. Mater. 2022, 934, 59–66. https://doi.org/10.4028/p-54tx42.
  137. Kliner, D.; Farrow, R.; Lugo, J.; et al. Advanced Metal Processing Enabled by Fiber Lasers with Tunable Beam Properties; SPIE: Bellingham, WA, USA, 2022; Volume 11981.
  138. Thompson, S.M.; Bian, L.; Shamsaei, N.; et al. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015, 8, 36–62. https://doi.org/10.1016/j.addma.2015.07.001.
  139. Pereira, J.C.; Aguilar, D.; Tellería, I.; et al. Semi-Continuous Functionally Graded Material Austenitic to Super Duplex Stainless Steel Obtained by Laser-Based Directed Energy Deposition. J. Manuf. Mater. Process. 2023, 7, 150.
  140. Yan, L.; Chen, Y.; Liou, F. Additive manufacturing of functionally graded metallic materials using laser metal deposition. Addit. Manuf. 2020, 31, 100901. https://doi.org/10.1016/j.addma.2019.100901.
  141. Karimzadeh, M.; Basvoju, D.; Vakanski, A.; et al. Machine Learning for Additive Manufacturing of Functionally Graded Materials. Materials 2024, 17, 3673.
  142. Li, N.; Liu, W.; Wang, Y.; et al. Laser Additive Manufacturing on Metal Matrix Composites: A Review. Chin. J. Mech. Eng. 2021, 34, 38. https://doi.org/10.1186/s10033-021-00554-7.
  143. Hu, Y.; Cong, W. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites. Ceram. Int. 2018, 44, 20599–20612. https://doi.org/10.1016/j.ceramint.2018.08.083.
  144. Dohda, K.; Boher, C.; Rezai-Aria, F.; et al. Tribology in metal forming at elevated temperatures. Friction 2015, 3, 1–27. https://doi.org/10.1007/s40544-015-0077-3.
  145. Mao, B.; Siddaiah, A.; Liao, Y.; et al. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020, 53, 153–173. https://doi.org/10.1016/j.jmapro.2020.02.009.
  146. Saboori, A.; Aversa, A.; Marchese, G.; et al. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019, 9, 3316.
  147. Ahn, D.-G. Directed Energy Deposition (DED) Process: State of the Art. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 703–742. https://doi.org/10.1007/s40684-020-00302-7.
  148. Piscopo, G.; Iuliano, L. Current research and industrial application of laser powder directed energy deposition. Int. J. Adv. Manuf. Technol. 2022, 119, 6893–6917. https://doi.org/10.1007/s00170-021-08596-w.
  149. Kanishka, K.; Acherjee, B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J. Manuf. Process. 2023, 89, 220–283. https://doi.org/10.1016/j.jmapro.2023.01.034.
  150. Najmon, J.C.; Raeisi, S.; Tovar, A. 2-Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry; Froes, F., Boyer, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 7–31.
  151. Humarán-Sarmiento, V.; Martínez-Franco, E.; Félix-Martínez, C.; et al. Directed energy deposition of stellite 6/WC-12Co metal matrix composite. Surf. Coat. Technol. 2024, 488, 131021. https://doi.org/10.1016/j.surfcoat.2024.131021.
  152. Shalnova, S.A.; Volosevich, D.V.; Sannikov, M.I.; et al. Direct energy deposition of SiC reinforced Ti–6Al–4V metal matrix composites: Structure and mechanical properties. Ceram. Int. 2022, 48, 35076–35084. https://doi.org/10.1016/j.ceramint.2022.08.097.
  153. Romio, P.C.; Marques, P.M.T.; Seabra, J.H.O.; et al. Spur gear teeth reconstruction via direct laser deposition. Forsch. Im Ingenieurwesen 2024, 88, 1. https://doi.org/10.1007/s10010-023-00721-3.
  154. Wang, L.; Guo, Y.; Chen, Y.; et al. Microstructure and wear properties of carbon nanotubes reinforced WE43 composite coating fabricated by laser directed energy deposition. Surf. Coat. Technol. 2024, 476, 130287. https://doi.org/10.1016/j.surfcoat.2023.130287.
  155. Pedroso, A.F.V.; Sebbe, N.P.V.; Silva, F.J.G.; et al. An In-Depth Exploration of Unconventional Machining Techniques for INCONEL® Alloys. Materials 2024, 17, 1197.
  156. Guan, C.; Yu, T.; Zhao, Y.; et al. Repair of Gear by Laser Cladding Ni60 Alloy Powder: Process, Microstructure and Mechanical Performance. Appl. Sci. 2023, 13, 319.
  157. Arlyapov, A.; Volkov, S.; Promakhov, V.; et al. Study of the Machinability of an Inconel 625 Composite with Added NiTi-TiB2 Fabricated by Direct Laser Deposition. Metals 2022, 12, 1956.
  158. Pedroso, A.F.V.; Sousa, V.F.C.; Sebbe, N.P.V.; et al. A Review of INCONEL® Alloy’s Non-conventional Machining Processes. In Proceedings of the Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems, Cham, Switzerland, 18–22 June 2024; pp. 773–783.
  159. Costa, R.D.F.S.; Sales-Contini, R.C.M.; Silva, F.J.G.; et al. A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing. Metals 2023, 13, 638.
  160. Park, J.; Kang, M.; Hahn, H. Composite Material Based Laminated Object Manufacturing (LOM) Process Simulation. Adv. Compos. Lett. 2019, 10, 237–245. https://doi.org/10.1177/096369350101000504.