
Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Chemical Composition and Health Benefits of Grape and Grape Products
Didem Şöhretoğlu 1,*, Ayşenur Duru 1, and Öznur Bengisu Köylüoğlu 2
1 Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
2 Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
* Correspondence: didems@hacettepe.edu.tr
Received: 2 February 2025; Revised: 19 March 2025; Accepted: 6 April 2025; Published: 28 April 2025
Abstract: Grape is a highly nutritious fruit that is widely consumed around the world. It is widely cultivated around the world. We provided knowledge on the phytochemical contents, biological impacts, and economic worth of grapes. Polyphenols are main constituents of grape and grape derivated products. They exhibited antioxidant, anti-inflammatory, and antihepatotoxic properties. The most prominent effect was the cardioprotective effect. The cardioprotective effect is shown by in vitro, in vivo studies as well as human studies.
Keywords:
grape Vitis Vitaceae polyphenolReferences
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In Grape Genom, 1st ed.; Cantu, D., Walker, M.A., Eds.; Springer Nature: Cham, Switzerland, 2019. pp. 1–24.
- Barbalho, S.M.; Bueno Ottoboni, A.M.M.; Fiorini, A.M.R.; et al. Grape juice or wine: Which is the best option? Crit. Rev. Food Sci. Nutr. 2020, 60, 3876–3889.
- Fortes, A.M.; Pais, M.S. Grape (Vitis species). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 257–286.
- Zhou, D.D.; Li, J.; Xiong, R.G.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755.
- Sağlam, H.; Çalkan Sağlam, Ö. Türkiye Bağcılığına Tarihsel Bir Bakış; Asma Genetik Kaynaklarının Önemi. SJAFS 2018, 32, 601–606.
- Çalkan Sağlam, Ö.; Sağlam, H. İnsanlık Tarihinde Üzümün Önemi. J. Agric. 2018, 1, 1–10.
- McGovern, P.E.; Fleming, S.J.; Katz, S.H. (Eds.) The Origins and Ancient History of Wine: Food and Nutrition in History and Antropology, 1st ed.; Routledge: London, UK, 1996.
- Maliogka, V.I.; Martelli, G.P.; Fuchs, M.; et al. Control of viruses infecting grapevine. In Advances in Virus Research, 1st ed.; Loebenstein, G., Katis, N. I., Eds.; Academic Press; London, UK, 2015; Volume 91, pp. 175–227.
- Food and Agriculture Organization of the United Nations. Top 10 Country Production of Grapes-2022. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 10 February 2024).
- Food and Agriculture Organization of the United Nations. Top 10 Country, Export Quantity of Grapes-2022. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity_exports (accessed on 10 February 2024).
- Food and Agriculture Organization of the United Nations. Top 10 Country Production of Grapes-2017. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 10 February 2024).
- Khan, N.; Fahad, S.; Naushad, M.; et al. Grape production critical review in the world. SSRN 2020, 3595842.
- Cabaroğlu, T.; Yilmaztekin, M. Üzümün Bileşimi ve Insan Sağlığı Üzerine Etkisi; Buldan Sempozyumu: Denizli, Turkey, 2006.
- Sahu, A.; Singh, D.; Shukla, R. Bioactive Compounds and Reported Pharmacological Activities of Vitis vinifera L. An Overview. WJPR 2023, 12, 27–38.
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149.
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867.
- Wijekoon, C.; Netticadan, T.; Siow, Y.L.; et al. Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America. Molecules 2022, 27, 336.
- Visioli, F.; Panaite, S.A.; Tomé-Carneiro, J. Wine’s Phenolic Compounds and Health: A Pythagorean View. Molecules 2020, 25, 4105.
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; et al. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646.
- Bakker, J.; Timberlake, C.F. Isolation, Identification, and Characterization of New Color-Stable Anthocyanins Occurring in Some Red Wines. J. Agric. Food Chem. 1997, 45, 35–43.
- Perestrelo, R.; Lu, Y.; Santos, S.A.O.; et al. Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn: Novel phenolic compounds in Vitis vinifera L. grape. Food Chem. 2012, 135, 94–104.
- Creaser, C.S.; Koupai-Abyazani, M.R.; Stephenson, G.R. Gas chromatographic–mass spectrometric characterization of flavanones in citrus and grape juices. Analyst 1992, 117, 1105–1109.
- Baron, M.; Prusova, B.; Tomaskova, L.; et al. Terpene content of wine from the aromatic grape variety ‘Irsai Oliver’ (Vitis vinifera L.) depends on maceration time. Open Life Sci. 2017, 12, 42–50.
- Luo, J.; Brotchie, J.; Pang, M.; et al. Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars. Food Chem. 2019, 299, 125101.
- Kostrz, M.; Satora, P. Formation of terpenes in grapes and wines. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2018, 340, 31–38.
- Mateo, J.J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567.
- Coelho, E.; Rocha, S.M.; Barros, A.S.; et al. Screening of variety- and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Anal. Chim. Acta. 2007, 597, 257–264.
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Study of the terpene profile at harvest and during berry development of Vitis vinifera L. aromatic varieties Aleatico, Brachetto, Malvasia di Candia aromatica and Moscato bianco. J. Sci. Food Agric. 2017, 97, 2898–2907.
- Fenoll, J.; Manso, A.; Hellín, P.; et al. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428.
- Zhang, P.; Fuentes, S.; Siebert, T.; et al. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes. Food Chem. 2016, 204, 463–474.
- Marais, J. Terpenes in the aroma of grapes and wines: A review. SAJEV 1983, 4, 49–58.
- Darriet, P.; Thibon, C.; Dubourdieu, D.; et al. Aroma and aroma precursors in grape berry. In The Biochemistry of the Grape Berry; Bentham Science: Sharjah, United Arab Emirates, 2012; Volume 26, pp 111–136.
- Orbán, N.; Kozák, I.O.; Drávucz, M.; et al. LC-MS method development to evaluate major triterpenes in skins and cuticular waxes of grape berries. IJFST 2009, 44, 869–873.
- Chidambara Murthy, K.N.; Singh, R.P.; Jayaprakasha, G.K. Antioxidant Activities of Grape (Vitis vinifera) Pomace Extracts. J. Agric. Food Chem. 2002, 50, 5909–5914.
- Tsantila, E.M.; Esslinger, N.; Christou, M.; et al. Antioxidant and Anticancer Activity of Vitis vinifera Extracts in Breast Cell Lines. Life 2024, 14, 228.
- Al-Warhi, T.; Zahran, E.M.; Selim, S.; et al. Antioxidant and Wound Healing Potential of Vitis vinifera Seeds Supported by Phytochemical Characterization and Docking Studies. Antioxidants 2022, 11, 881.
- Harbeoui, H.; Bettaieb Rebey, I.; Ouerghemmi, I.; et al. Biochemical characterization and antioxidant activity of grape (Vitis vinifera L.) seed oils from nine Tunisian varieties. J. Food Biochem. 2018, 42, e12595.
- Habashy, N.H.; Kodous, A.S.; Abu-Serie, M.M. Targeting ROS/NF-κB signaling pathway by the seedless black Vitis vinifera polyphenols in CCl4-intoxicated kidney, lung, brain, and spleen in rats. Sci. Rep. 2021, 11, 16575.
- Radovanović, A.N.; Jovančićević, B.S.; Radovanović, B.C.; et al. Antioxidant and antimicrobial potentials of Serbian red wines produced from international Vitis vinifera grape varieties. J. Sci. Food Agric. 2012, 92, 2154–2161.
- Al-Awwadi, N.A.; Bornet, A.; Azay, J.; et al. Red Wine Polyphenols Alone or in Association with Ethanol Prevent Hypertension, Cardiac Hypertrophy, and Production of Reactive Oxygen Species in the Insulin-Resistant Fructose-Fed Rat. J. Agric. Food Chem. 2004, 52, 5593–5597.
- Mollica, A.; Scioli, G.; Della Valle, A.; et al. Phenolic Analysis and In Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704.
- Shaban, N.Z.; El-Faham, A.A.; Abu-Serie, M.M.; et al. Targeting apoptosis in MCF-7 and Ehrlich ascites carcinoma cells by saponifiable fractions from green and black Vitis vinifera seed oil. Biomed. Pharmacother. 2023, 157, 114017.
- Shaban, N.Z.; El-Faham, A.A.; Abu-Serie, M.M.; et al. The black Vitis vinifera seed oil saponifiable fraction ameliorates hepatocellular carcinoma in vitro and in vivo via modulating apoptosis and ROS/NF-κB signaling. Biomed. Pharmacother. 2024, 171, 116215.
- Shaban, N.Z.; Hegazy, W.A.; Abu-Serie, M.M.; et al. Seedless black Vitis vinifera polyphenols suppress hepatocellular carcinoma in vitro and in vivo by targeting apoptosis, cancer stem cells, and proliferation. Biomed. Pharmacother. 2024, 175, 116638.
- Lin, K.N.; Jiang, Y.L.; Zhang, S.G.; et al. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway. Biomed. Pharmacother. 2020, 125, 109885.
- Barron, C.C.; Moore, J.; Tsakiridis, T.; et al. Inhibition of human lung cancer cell proliferation and survival by wine. Cancer Cell Int. 2014, 14, 6.
- Chen, S.; Yi, Y.; Xia, T.; et al. The influences of red wine in phenotypes of human cancer cells. Gene 2019, 702, 194–204.
- Giribabu, N.; Karim, K.; Kilari, E.K.; et al. Anti-Inflammatory, Antiapoptotic and Proproliferative Effects of Vitis vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Male Rats. Can. J. Diabetes 2018, 42, 138–149.
- Calabriso, N.; Massaro, M.; Scoditti, E.; et al. Grape Pomace Extract Attenuates Inflammatory Response in Intestinal Epithelial and Endothelial Cells: Potential Health-Promoting Properties in Bowel Inflammation. Nutrients 2022, 14, 1175.
- Nery-Flores, S.D.; Castro-López, C.M.; Martínez-Hernández, L.; et al. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem. Biodivers. 2024, 21, e202302065.
- Niknami, E.; Sajjadi, S.E.; Talebi, A.; et al. Protective Effect of Vitis vinifera (Black Grape) Seed Extract and Oil on Acetic Acid-Induced Colitis in Rats. Int. J. Prev. Med. 2020, 11, 102.
- Bezerra, I.L.; Caillot, A.R.C.; Palhares, L.C.G.F.; et al. Structural characterization of polysaccharides from Cabernet Franc, Cabernet Sauvignon and Sauvignon Blanc wines: Anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Carbohydr. Polym. 2018, 186, 91–99.
- Fragopoulou, E.; Petsini, F.; Choleva, M.; et al. Evaluation of Anti-Inflammatory, Anti-Platelet and Anti-Oxidant Activity of Wine Extracts Prepared from Ten Different Grape Varieties. Molecules 2020, 25, 5054.
- Angel-Morales, G.; Noratto, G.; Mertens-Talcott, S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: Potential role of microRNA-126. Food Funct. 2012, 3, 745–752.
- Madi Almajwal, A.; Farouk Elsadek, M. Lipid-lowering and hepatoprotective effects of Vitis vinifera dried seeds on paracetamol-induced hepatotoxicity in rats. Nutr. Res. Pract. 2015, 9, 37–42.
- Ismail, A.F.M.; Salem, A.A.M.; Eassawy, M.M.T. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat. J. Photochem. Photobiol. B Biol. 2016, 160, 1–10.
- Adam, S.H.; Giribabu, N.; Kassim, N.; et al. Protective effect of aqueous seed extract of Vitis vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus. Biomed. Pharmacother. 2016, 81, 439–452.
- Soares de Moura, R.; da Costa, G.F.; Moreira, A.S.B.; et al. Vitis vinifera L. grape skin extract activates the insulin-signalling cascade and reduces hyperglycaemia in alloxan-induced diabetic mice. J. Pharm. Pharmacol. 2012, 64, 268–276.
- Al-Mousawi, A.H.; Al-kaabi, S.J.; Albaghdadi, A.J.H.; et al. Effect of Black Grape Seed Extract (Vitis vinifera) on Biofilm Formation of Methicillin-Resistant Staphylococcus aureus and Staphylococcus haemolyticus. Curr. Microbiol. 2020, 77, 238–245.
- Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 2003, 36, 117–122.
- Đorđevski, N.; Stojković, D.; Živković, J.; et al. Tamjanika, a Balkan native variety of Vitis vinifera L.: Chemical characterization, antibacterial, and anti-dermatomycosis potential of seed oil. Food Sci. Nutr. 2022, 10, 1312–1319.
- Calabriso, N.; Scoditti, E.; Massaro, M.; et al. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: Differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur. J. Nutr. 2016, 55, 477–489.
- Bocsan, I.C.; Pop, R.M.; Sabin, O.; et al. Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules 2021, 26, 3221.
- Sarkhosh-Khorasani, S.; Sangsefidi, Z.S.; Hosseinzadeh, M. The effect of grape products containing polyphenols on oxidative stress: A systematic review and meta-analysis of randomized clinical trials. Nutr. J. 2021, 20, 25.
- Ghalishourani, S.S.; Farzollahpour, F.; Shirinbakhshmasoleh, M.; et al. Effects of grape products on inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2021, 35, 4898–4912.
- Moodi, V.; Abedi, S.; Esmaeilpour, M.; et al. The effect of grapes/grape products on glycemic response: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2021, 35, 5053–5067.
- Ghaedi, E.; Moradi, S.; Aslani, Z.; et al. Effects of grape products on blood lipids: A systematic review and dose–response meta-analysis of randomized controlled trials. Food Funct. 2019, 10, 6399–6416.
- Ashoori, M.; Soltani, S.; Kolahdouz-Mohammadi, R.; et al. The effect of whole grape products on blood pressure and vascular function: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1836–1848.
- Estruch, R. Wine and cardiovascular disease. Int. Food Res. 2000, 33, 219–226.
- Weaver, S.R.; Rendeiro, C.; McGettrick, H.M.; et al. Fine wine or sour grapes? A systematic review and meta-analysis of the impact of red wine polyphenols on vascular health. Eur. J. Nutr. 2021, 60, 1–28.
- Lombardo, M.; Feraco, A.; Camajani, E.; et al. Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients 2023, 15, 1921.
- Kim, Y.; Je, Y.; Giovannucci, E.L. Association between Alcohol Consumption and Survival in Colorectal Cancer: A Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1891–1901.
- Chen, J.-Y.; Zhu, H.-C.; Guo, Q.; et al. Dose-dependent associations between wine drinking and breast cancer risk-meta-analysis findings. Asian Pac. J. Cancer Prev. 2016, 17, 1221–1233.
- Vartolomei, M.D.; Kimura, S.; Ferro, M.; et al. The impact of moderate wine consumption on the risk of developing prostate cancer. Clin. Epidemiol. 2018, 10, 431–444.
- Alhajlah, S. Effect of grape-derived products on the serum levels of enzymes mainly produced by the liver: A systematic review and meta-analysis of parallel randomized controlled trials. Phytother. Res. 2024, 38, 3583–3593.