Downloads

Additional Files

Dussouillez, M., Mensi, M., Marozau, I., Jeangros, Q., Nicolay, S., Ballif, C., & Paracchino, A. Stabilizing the Chemistry of NiOx in Perovskite Solar Cells to Pass the Damp Heat Test. Materials and Sustainability. 2025, 1(1), 6. doi: https://doi.org/10.53941/matsus.2025.100006

Article

Stabilizing the Chemistry of NiOx in Perovskite Solar Cells to Pass the Damp Heat Test

Marion Dussouillez 1,2,*,†, Mounir Mensi 3, Ivan Marozau 1, Quentin Jeangros 1, Sylvain Nicolay 1,‡, Christophe Ballif 1,2 and Adriana Paracchino 1,*

1 CSEM Sustainable Energy Center, Rue Jaquet-Droz 1, 2002 Neuchâtel, Switzerland

2 Laboratory of Photovoltaics and Thin Film Electronics, Institute of Electrical and Micro-Engineering (IEM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland

3 X-Ray Diffraction and Surface Analytics Platform, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, 1951 Sion, Switzerland

* Correspondence: marion.dussouillez@gmail.com (M.D.); adriana.paracchino@csem.ch (A.P.)

† Current address: Solarlab Aiko Europe GmbH, Berliner Allee 29, 79110 Freiburg im Breisgau, Germany

‡ Current address: Rolex S.A., David-Moning-Strasse 9, 2504 Biel, Switzerland

Received: 7 January 2025; Revised: 10 March 2025; Accepted: 13 March 2025; Published: 18 March 2025

Abstract: NiOx is widely used as a hole transport material in perovskite solar cells (PSCs). This wide band gap p-type material is conveniently deposited via high throughput RF-sputtering, making it suitable for the industrialization of PSCs. Nonetheless, for the cells to pass accelerated degradation tests such as the IEC 61215 damp heat (DH) test, the chemistry of the NiOx film should remain constant at elevated temperaturs to preserve its optoelectronic properties. This study emphasizes that structural defects resulting from Ni vacancies in NiOx lead to significant degradation of the PSCs after just a few hours of exposure to elevated temperatures (85 °C). We introduce here an approach to fine-tune the chemistry of the NiOx film by adjusting the gas flow during sputtering deposition and by incorporating Cs. Through this control on the chemistry of the layer, the optimized NiOx-based PSCs exhibit remarkable stability, with devices passing 5 times the IEC 61215 norm (<5% rel after 5000 h of DH testing) and also showing better stability under light soaking. XPS analysis reveals that the concentration of Ni3+ in the bulk of the standard NiOx film is twice that in the optimized NiOx. This suggests that the Ni3+ concentration, typically equal to the Ni vacancy concentration and beneficial for charge transport in NiOx, may actually compromise the stability of the PSCs. Additionally, the film density of the optimized NiOx film was significantly higher than that of the standard film.

Keywords:

doped-NiOx perovskite solar cell stability industrialization

References

  1. Cui, J.; Meng, F.; Zhang, H.; et al. CH3NH3PbI3-Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Appl. Mater.s Interfaces 2014, 6, 22862. doi: 10.1021/am507108u
  2. Guziewicz, M.; Grochowski, J.; Borysiewicz, M.; et al. Electrical and optical properties of NiO films deposited by magnetron sputtering. Opt. Appl. 2011, 41, 431.
  3. Xu, J.; Boyd, C.C.; Yu, Z.J.; et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 2020, 367, 1097. doi: 10.1126/science.aaz5074
  4. Hou, Y.; Aydin, E.; De Bastiani, M.; et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 2020, 367, 1135. doi: 10.1126/science.aaz3691
  5. De Bastiani, M.; Mirabelli, A.J.; Hou, Y.; et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat. Energy 2021, 6, 167. doi: 10.1038/s41560-020-00756-8
  6. Kamino, B.A.; Paviet-Salomon, B.; Moon, S.J.; et al. Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite–Silicon Tandems. ACS Appl. Energy Mater. 2019, 2, 3815. doi: 10.1021/acsaem.9b00502
  7. Dussouillez, M.; Moon, S.; Mensi, M.; et al. Understanding and Mitigating the Degradation of Perovskite Solar Cells Based on a Nickel Oxide Hole Transport Material during Damp Heat Testing. ACS Appl. Mater. Interfaces 2022, 15, 27941. doi: 10.1021/acsami.3c02709
  8. Karsthof, R.; Anton, A.M.; Kremer, F.; et al. Nickel vacancy acceptor in nickel oxide: Doping beyond thermodynamic equilibrium. Phys. Rev. Mater. 2020, 4, 034601. doi: 10.1103/PhysRevMaterials.4.034601
  9. Boyd, C.C.; Shallcross, R.C.; Moot, T.; et al. Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule 2020, 4, 1759. doi: 10.1016/j.joule.2020.06.004
  10. Itzhak, A.; He, X.; Kama, A.; et al. NiN-Passivated NiO Hole-Transport Layer Improves Halide Perovskite-Based Solar Cell. ACS Appl. Mater. Interfaces 2022, 14, 47587. doi: 10.1021/acsami.2c11701
  11. Peng, Z.; Zuo, Z.; Qi, Q.; et al. Managing the Double-Edged Sword of Ni3+ in Sputter-Deposited NiOx by Interfacial Redox Reactions for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6, 1396. doi: 10.1021/acsaem.2c03260
  12. Guo, Y.; Ma, J.; Wang, H.; et al. Overcoming Ni3+-Induced Non-Radiative Recombination at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Adv. Mater. Interfaces 2021, 8, 1. doi: 10.1002/admi.202100920
  13. Li, C.; Wang, X.; Bi, E.; et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 2023, 379, 690. doi: 10.1126/science.ade3970
  14. Zhang, C.; Shen, X.; Chen, M.; et al. Constructing a Stable and Efficient Buried Heterojunction via Halogen Bonding for Inverted Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2203250. doi: 10.1002/aenm.202203250
  15. Lee, S.; Lee, J.; Park, H.; et al. Defect-Passivating Organic/Inorganic Bicomponent Hole-Transport Layer for High Efficiency Metal-Halide Perovskite Device. ACS Appl. Mater. Interfaces 2020, 12, 40310. doi: 10.1021/acsami.0c09784
  16. Phung, N.; Verheijen, M.; Todinova, A.; et al. Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 2166. doi: 10.1021/acsami.1c15860
  17. Yu, X.; Wang, Y.; Li, L.; et al. Interfacial modification of NiOx by self-assembled monolayer for efficient and stable inverted perovskite solar cells. Chin. J. Chem. Phys. 2024, 37, 553. doi: 10.1063/1674-0068/cjcp2303026
  18. Alghamdi, A.R.M.; Yanagida, M.; Shirai, Y.; et al. Surface Passivation of Sputtered NiOx Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells. ACS Omega 2022, 7, 12147. doi: 10.1021/acsomega.2c00509
  19. Yan, X.; Zheng, J.; Zheng, L.L.; et al. Optimization of sputtering NiOx films for perovskite solar cell applications. Mater. Res. Bull. 2018, 103, 150. doi: 10.1016/j.materresbull.2018.03.027
  20. Shi, J.; Lai, L.; Zhang, P.; et al. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route. J. Solid State Chem. 2016, 241, 1. doi: 10.1016/j.jssc.2016.05.032
  21. Chen, W.; Liu, F.Z.; Feng, X.Y.; et al. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700722. doi: 10.1002/aenm.201700722
  22. Li, G.; Jiang, Y.; Deng, S.; et al. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Adv. Sci. 2017, 4, 1700463. doi: 10.1002/advs.201700463
  23. Yao, Q.; Zhao, L.; Sun, X.; et al. Na2S decorated NiOx as effective hole transport layer for inverted planar perovskite solar cells. Mater. Sci. Semicond. Process 2023, 153, 107107. doi: 10.1016/j.mssp.2022.107107
  24. Chen, W.; Wu, Y.; Yue, Y.; et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944. doi: 10.1126/science.aad1015
  25. Traore, B.; Pedesseau, L.; Blancon, J.C.; et al. Importance of Vacancies and Doping in the Hole-Transporting Nickel Oxide Interface with Halide Perovskites. ACS Appl. Mater. Interfaces 2020, 12, 6633. doi: 10.1021/acsami.9b19457
  26. Niu, G.; Wang, S.; Li, J.; et al. Oxygen doping in nickel oxide for highly efficient planar perovskite solar cells. J. Mater. Chem. A Mater. 2018, 6, 4721. doi: 10.1039/C8TA00161H
  27. Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; et al. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324. doi: 10.1002/sia.3026
  28. Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717. doi: 10.1016/j.apsusc.2010.10.051
  29. Islam, M.B.; Yanagida, M.; Shirai, Y.; et al. NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega 2017, 2, 2291. doi: 10.1021/acsomega.7b00538
  30. Predanocy, M.; Hotový, I.; Čaplovičová, M. Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Appl. Surf. Sci. 2017, 395, 208. doi: 10.1016/j.apsusc.2016.05.028
  31. Islam, R.; Chen, G.; Ramesh, P.; et al. Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to UV/Ozone Treatment. ACS Appl. Mater. Interfaces 2017, 9, 17201. doi: 10.1021/acsami.7b01629
  32. Fu, F.; Pisoni, S.; Jeangros, Q.; et al. I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions. Energy Environ. Sci. 2019, 12, 3074. doi: 10.1039/C9EE02043H
  33. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751. doi: 10.1107/S0567739476001551
  34. Bakar, W.A.W.A.; Othman, M.Y.; Ali, R.; et al. The Investigation of Active Sites on Nickel Oxide Base Catalysts towards the In-situ Reactions of Methanation and Desulfurization. Mod. Appl. Sci. 2009, 3, 35. doi: 10.5539/mas.v3n2p35
  35. Uhlenbrock, S.; Scharfschwerdt, C.; Neumann, M.; et al. The influence of defects on the Ni 2p and O 1s XPS of NiO. J. Phys. Condens. Matter 1992, 4, 7973. doi: 10.1088/0953-8984/4/40/009