Supporting information

Intrinsically Multi-Color Device Based on Dynamic Cooperation of Molecular Switches and Metal Ions

Min Li, Shuo Wang*, Ruipeng Shen, Yigui Xie, Yu-Mo Zhang and Sean Xiao-An Zhang*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

E-mail: wangshuo@jlu.edu.cn and seanzhang@jlu.edu.cn

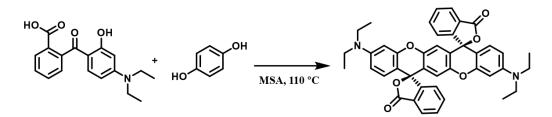


Fig. S1. The synthetic route for cis-ABPX.

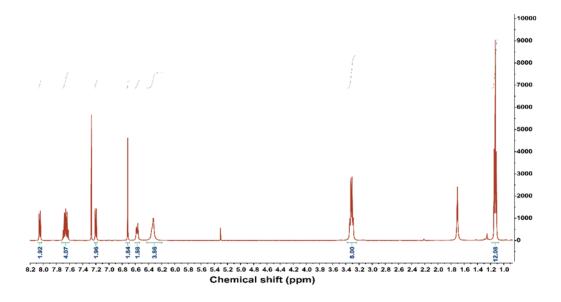


Fig. S2. The ¹H NMR spectra of cis-ABPX in CDCl₃.

cis-ABPX: ¹H NMR (400 MHz, Chloroform-d) δ 8.05 (dt, J = 7.2, 1.0 Hz, 2H), 7.72–7.60 (m, 4H), 7.20 (dt, J = 7.7, 0.9 Hz, 2H), 6.71 (s, 2H), 6.57 (d, J = 8.6 Hz, 2H), 6.33 (s, 4H), 3.31 (q, J = 7.1 Hz, 8H), 1.13 (t, J = 7.0 Hz, 12H).

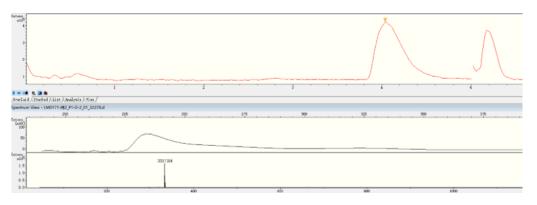


Fig. S3. HRMS spectrum of cis-ABPX.

cis-ABPX: Calcd. For $C_{42}H_{37}N_2O_6 [M+2H]^{2+}$: 333.1359. Found: 333.1384.

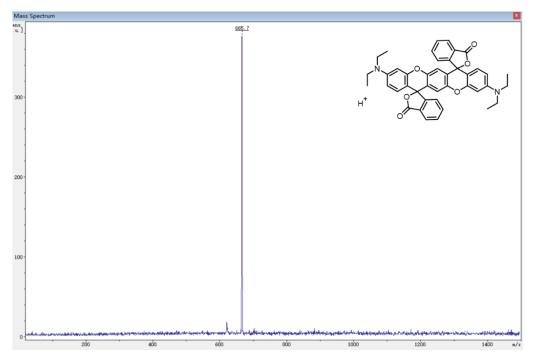


Fig. S4. MALDI-TOF mass spectrometry of cis-ABPX.

cis-ABPX: Calcd. For C₄₂H₃₇N₂O₆ [M+H]⁺: 665.8. Found: 665.7.

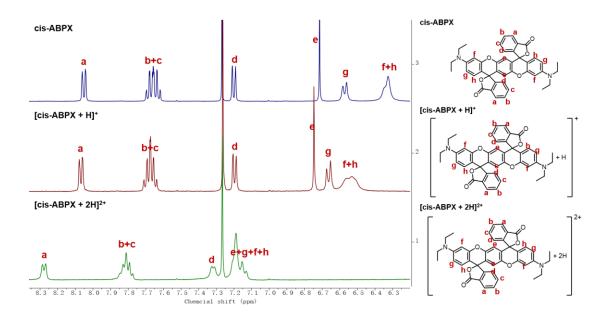


Fig. S5. ¹H NMR spectra of cis-ABPX, [cis-ABPX & H]⁺ and [cis-ABPX & 2H]²⁺, TFA was used as proton source, and samples were dissolved in CDCl₃.

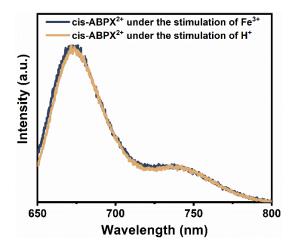


Fig. S6. The fluorescence spectra of cis-ABPX treated with excess Fe³⁺ or H⁺ respectively.

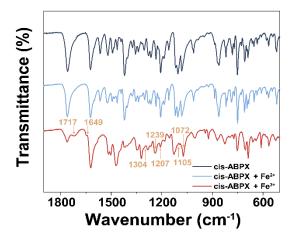
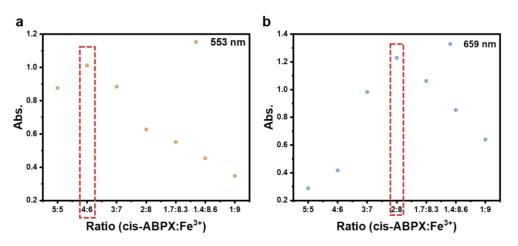
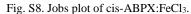




Fig. S7. The IR spectra of cis-ABPX (black curve), cis-ABPX & Fe²⁺ (blue curve) and cis-ABPX & Fe³⁺ (red curve) in the ranges of 400 - 4000 cm⁻¹ wave numbers.

To perform this experiment, solution consisted of cis-ABPX and FeCl₃ with different ratio had been prepared, and the total concentration of these solution is the same $(1.0 \times 10^{-4} \text{ mol/L})$. Then, the absorbance of these solutions at 553 nm (a) and 659 nm (b) had been tested.

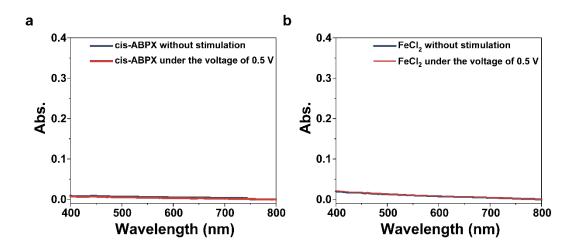


Fig. S9. The absorption spectra of cis-ABPX (a) and FeCl₂ (b) without stimulation and under the voltage of 0.5 V. The concentration of cis-ABPX and FeCl₂ were 1.0×10^{-4} mol/L in CH₂Cl₂+CH₃CN (v:v=1:1).

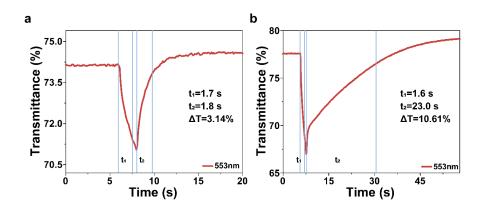


Fig. S10. The transmittance change at 553 nm of the solid-state devices under the voltage of 1.2 V/-0.8 V (a) and 1.8 V/-0.8 V (b) (t₁ and t₂ corresponding to the time that takes to modulate the device transmittance from 0% to 90% of the transmittance change ratio during the coloring or fading process).

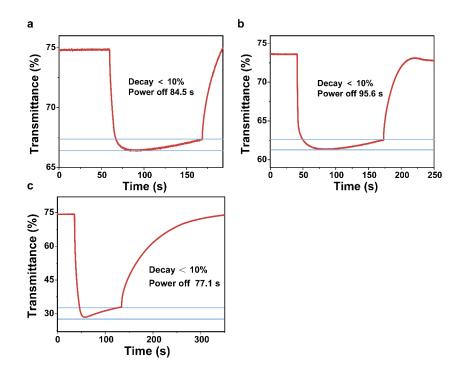


Fig. S11. The transmittance of ECD at 553 nm under stimulation of 1.2 V, power off 84.5 s, -0.8 V (a) and 1.8 V, power off 95.6 s, -1.0 V (b). (c) The transmittance of ECD at 659 nm under stimulation of 1.8 V, power off 77.1 s. -1.0 V.

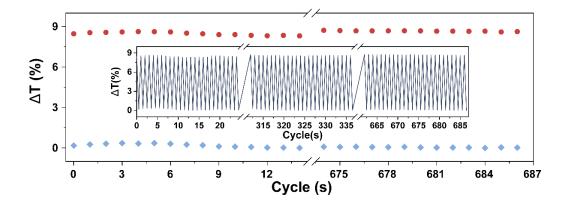


Fig. S12. The Δ T of the ECD at 659 nm under stimulation of 1.7 V/-0.9 V for >600 test cycles, no abnormal changes.

Stimulation voltage	L*	a*	b*	ΔE^*
0 V	40.16	-1.08	0.56	-
0.3 V	52.39	-1.28	-0.06	12 (0 vs. 0.3 V)
0.6V	54.74	0.02	0.02	3 (0.3 vs. 0.6 V)
0.9 V	52.16	2.14	-0.69	3 (0.6 vs. 0.9 V)
1.2 V	48.33	1.84	-1.98	4 (0.9 vs. 1.2 V)
1.5 V	40.00	-3.04	-4.72	10 (1.2 vs. 1.5 V)
1.8 V	30.96	-8.54	-5.91	11 (1.5 vs. 1.8 V)
2.1 V	24.61	-9.59	-6.2	6 (1.8 vs. 2.1 V)
2.4 V	16.41	-9.17	-6.35	8 (2.1 vs. 2.4 V)

Table S1. The CIE L*a*b* values of the device treated with different voltages.

 $\Delta E = \sqrt{\left(\left(\Delta L\right)^2 + \left(\Delta a\right)^2 + \left(\Delta b\right)^2\right)}$

Where ΔL , Δa , Δb are the brightness difference between the device under the two groups of voltage, the difference between red and green components, the difference between yellow and blue components, and ΔE is the color difference of the device under the two groups of voltage.