Downloads

Liu, L., Duan, Y., & Chang, M. Classification, Characteristics and Biological Applications of Inorganic Nanomaterials. Medical Materials Research. 2025. doi: Retrieved from https://w3.sciltp.com/journals/mmr/article/view/817

Review

Classification, Characteristics and Biological Applications of Inorganic Nanomaterials

Lili Liu, Yanqiu Duan and Meiqi Chang *

Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China

* Correspondence: changmeiqi@vip.sina.com

Received: 14 January 2025; Revised: 18 February 2025; Accepted: 20 February 2025; Published: 4 March 2025

Abstract: The application of inorganic nanomaterials in disease has attracted increasing attention, particularly in the areas of bioimaging, antibacteria and disease treatment. Due to their unique physicochemical properties, such as good biocompatibility, adjustable surface characteristics and excellent stability, inorganic materials have become an important component in drug delivery systems and nanomedicine. Common inorganic materials serve not only to effectively deliver drugs and facilitate controlled release within the body, but also to enhance their biological effects through specific functionalization strategies. This review aims to provide a comprehensive analysis of the latest advancements in the field of inorganic nanomaterials. The categorization and properties of inorganic nanomaterials are presented to elucidate potential structure-function relationships. Additionally, the engineering of inorganic nanomaterials for biomedical applications is comprehensively summarized. Finally, the current challenges and future directions are discussed and projected to foster technological advancements in the efficient treatment of diseases.

Keywords:

inorganic nanomaterials biomedical applications nanomedicine disease treatment

References

  1. Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019, 144, 57–77. DOI: 10.1016/j.addr.2019.07.010.
  2. Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct. Target. Ther. 2023, 8(1), 435. DOI: 10.1038/s41392-023-01654-7.
  3. Zhang, H.; Montesdeoca, N.; Tang, D.; Liang, G.; Cui, M.; Xu, C.; Servos, L. M.; Bing, T.; Papadopoulos, Z.; Shen, M.; et al. Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma. Nat. Commun. 2024, 15(1), 9405. DOI: 10.1038/s41467-024-53646-y.
  4. Chen, L.; Zhou, L.; Wang, C.; Han, Y.; Lu, Y.; Liu, J.; Hu, X.; Yao, T.; Lin, Y.; Liang, S.; et al. Tumor-Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-Enhanced Immunotherapy with Polarization toward M1-Type Macrophages on Triple Negative Breast Cancers. Adv. Mater. 2019, 31(52), e1904997. DOI: 10.1002/adma.201904997.
  5. Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J. Antimicrobial Gold Nanoclusters. ACS Nano 2017, 11(7), 6904–6910. DOI: 10.1021/acsnano.7b02035.
  6. Gong, X.; Jadhav, N. D.; Lonikar, V. V.; Kulkarni, A. N.; Zhang, H.; Sankapal, B. R.; Ren, J.; Xu, B. B.; Pathan, H. M.; Ma, Y.; et al. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv. Colloid Interface Sci. 2024, 323, 103053. DOI: 10.1016/j.cis.2023.103053.
  7. Kesharwani, P.; Ma, R.; Sang, L.; Fatima, M.; Sheikh, A.; Abourehab, M. A. S.; Gupta, N.; Chen, Z. S.; Zhou, Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol. Cancer 2023, 22(1), 98. DOI: 10.1186/s12943-023-01798-8.
  8. Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci.2019, 265, 29–44. DOI: 10.1016/j.cis.2019.01.003.
  9. Zhu, X.; Li, S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol. Cancer 2023, 22(1), 94. DOI: 10.1186/s12943-023-01797-9.
  10. Seidi, F.; Zhong, Y.; Xiao, H.; Jin, Y.; Crespy, D. Degradable polyprodrugs: design and therapeutic efficiency. Chem. Soc. Rev. 2022, 51(15), 6652–6703. DOI: 10.1039/d2cs00099g.
  11. Wang, X.; Zhong, X.; Li, J.; Liu, Z.; Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50(15), 8669–8742. DOI: 10.1039/d0cs00461h.
  12. Sobhanan, J.; Rival, J. V.; Anas, A.; Sidharth Shibu, E.; Takano, Y.; Biju, V. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Adv. Drug Deliv. Rev. 2023, 197, 114830. DOI: 10.1016/j.addr.2023.114830.
  13. Yang, J.; Feng, J.; Yang, S.; Xu, Y.; Shen, Z. Exceedingly Small Magnetic Iron Oxide Nanoparticles for T(1)-Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors. Small 2023, 19(49), e2302856. DOI: 10.1002/smll.202302856.
  14. Li, F.; Chen, L.; Zhong, S.; Chen, J.; Cao, Y.; Yu, H.; Ran, H.; Yin, Y.; Reutelingsperger, C.; Shu, S.; et al. Collagen-Targeting Self-Assembled Nanoprobes for Multimodal Molecular Imaging and Quantification of Myocardial Fibrosis in a Rat Model of Myocardial Infarction. ACS Nano 2024, 18(6), 4886–4902. DOI: 10.1021/acsnano.3c09801.
  15. Xu, M.; Lin, Y.; Li, Y.; Dong, Y.; Guo, C.; Zhou, X.; Wang, L. Nanoprobe Based on Novel NIR-II Quinolinium Cyanine for Multimodal Imaging. Small 2024, 20(49), e2406879. DOI: 10.1002/smll.202406879.
  16. Bi, X.; Bai, Q.; Liang, M.; Yang, D.; Li, S.; Wang, L.; Liu, J.; Yu, W. W.; Sui, N.; Zhu, Z. Silver Peroxide Nanoparticles for Combined Antibacterial Sonodynamic and Photothermal Therapy. Small 2022, 18(2), e2104160. DOI: 10.1002/smll.202104160.
  17. Zhu, X.; Wang, J.; Cai, L.; Wu, Y.; Ji, M.; Jiang, H.; Chen, J. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J. Hazard Mater. 2022, 430, 128436. DOI: 10.1016/j.jhazmat.2022.128436.
  18. Liu, Y.; Zhao, Y.; Guo, S.; Qin, D.; Yan, J.; Cheng, H.; Zhou, J.; Ren, J.; Sun, L.; Peng, H.; et al. Copper doped carbon dots modified bacterial cellulose with enhanced antibacterial and immune regulatory functions for accelerating wound healing. Carbohydr Polym 2024, 346, 122656. DOI: 10.1016/j.carbpol.2024.122656.
  19. Salah, M.; Akasaka, H.; Shimizu, Y.; Morita, K.; Nishimura, Y.; Kubota, H.; Kawaguchi, H.; Sogawa, T.; Mukumoto, N.; Ogino, C.; et al. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells. J. Exp. Clin. Cancer Res. 2022, 41(1), 146. DOI: 10.1186/s13046-022-02358-6.
  20. Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem. Soc. Rev. 2022, 51(13), 5365–5451. DOI: 10.1039/d1cs00659b.
  21. Khan, S.; Falahati, M.; Cho, W. C.; Vahdani, Y.; Siddique, R.; Sharifi, M.; Jaragh-Alhadad, L. A.; Haghighat, S.; Zhang, X.; Ten Hagen, T. L. M.; et al. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv. Colloid Interface Sci. 2023, 321, 103007. DOI: 10.1016/j.cis.2023.103007.
  22. Arvizo, R. R.; Bhattacharyya, S.; Kudgus, R. A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev. 2012, 41(7), 2943–2970. DOI: 10.1039/c2cs15355f.
  23. Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22(25), 2729–2742. DOI: 10.1002/adma.201000260.
  24. Fan, H.; Yan, G.; Zhao, Z.; Hu, X.; Zhang, W.; Liu, H.; Fu, X.; Fu, T.; Zhang, X.-B.; Tan, W. A Smart Photosensitizer-Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angew. Chem. Int. Ed. Engl. 2016, 55(18), 5477–5482. DOI: 10.1002/anie.201510748.
  25. Zhu, W.; Dong, Z.; Fu, T.; Liu, J.; Chen, Q.; Li, Y.; Zhu, R.; Xu, L.; Liu, Z. Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. Adv. Funct. Mater. 2016, 26(30), 5490-5498. DOI: 10.1002/adfm.201600676.
  26. Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 2014, 26(41), 7019–7026. DOI: 10.1002/adma.201402572.
  27. Chen, Q.; Feng, L.; Liu, J.; Zhu, W.; Dong, Z.; Wu, Y.; Liu, Z. Intelligent Albumin-MnO2 Nanoparticles as pH-/H2 O2 -Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Adv. Mater. 2016, 28(33), 7129–7136. DOI: 10.1002/adma.201601902.
  28. Dong, Z.; Feng, L.; Zhu, W.; Sun, X.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO(3) nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomater. 2016, 110, 60–70. DOI: 10.1016/j.biomaterials.2016.09.025.
  29. Xu, L.; Tong, G.; Song, Q.; Zhu, C.; Zhang, H.; Shi, J.; Zhang, Z. Enhanced Intracellular Ca(2+) Nanogenerator for Tumor-Specific Synergistic Therapy via Disruption of Mitochondrial Ca(2+) Homeostasis and Photothermal Therapy. ACS Nano 2018, 12(7), 6806–6818. DOI: 10.1021/acsnano.8b02034.
  30. Hao, J.; Song, G.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. Adv. Sci. (Weinh.) 2017, 4(1), 1600160. DOI: 10.1002/advs.201600160.
  31. Zhou, M.; Li, J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy. ACS Nano 2015, 9(7), 7085–7096. DOI: 10.1021/acsnano.5b02635.
  32. Wang, L.; Xu, D.; Jiang, L.; Gao, J.; Tang, Z.; Xu, Y.; Chen, X.; Zhang, H. Transition Metal Dichalcogenides for Sensing and Oncotherapy: Status, Challenges, and Perspective. Adv. Funct. Mater. 2020, 31(5). DOI: 10.1002/adfm.202004408.
  33. Yang, S. M.; Shim, J. H.; Cho, H. U.; Jang, T. M.; Ko, G. J.; Shim, J.; Kim, T. H.; Zhu, J.; Park, S.; Kim, Y. S.; et al. Hetero-Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System. Adv. Mater. 2022, 34(14), e2108203. DOI: 10.1002/adma.202108203.
  34. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. Engl. 2013, 52(14), 3953–3957. DOI: 10.1002/anie.201300519.
  35. Feng, T.; Ai, X.; Ong, H.; Zhao, Y. Dual-Responsive Carbon Dots for Tumor Extracellular Microenvironment Triggered Targeting and Enhanced Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8(29), 18732–18740. DOI: 10.1021/acsami.6b06695.
  36. Feng, T.; Ai, X.; An, G.; Yang, P.; Zhao, Y. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. ACS Nano 2016, 10(4), 4410–4420. DOI: 10.1021/acsnano.6b00043.
  37. Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24(37), 5104–5110. DOI: 10.1002/adma.201200650.
  38. Huang, X.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q.; et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7(7), 5684–5693. DOI: 10.1021/nn401911k.
  39. Licciardello, N.; Hunoldt, S.; Bergmann, R.; Singh, G.; Mamat, C.; Faramus, A.; Ddungu, J. L. Z.; Silvestrini, S.; Maggini, M.; De Cola, L.; et al. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale 2018, 10(21), 9880–9891. DOI: 10.1039/c8nr01063c.
  40. Wang, S.; Li, C.; Qian, M.; Jiang, H.; Shi, W.; Chen, J.; Lächelt, U.; Wagner, E.; Lu, W.; Wang, Y.; et al. Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots. Biomater. 2017, 141, 29–39. DOI: 10.1016/j.biomaterials.2017.05.040.
  41. Iannazzo, D.; Ziccarelli, I.; Pistone, A. Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. J. Mater. Chem. B 2017, 5(32), 6471–6489. DOI: 10.1039/c7tb00747g.
  42. Lee, C.; Kwon, W.; Beack, S.; Lee, D.; Park, Y.; Kim, H.; Hahn, S. K.; Rhee, S.-W.; Kim, C. Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy. Theranostics 2016, 6(12), 2196–2208..
  43. Chong, Y.; Ma, Y.; Shen, H.; Tu, X.; Zhou, X.; Xu, J.; Dai, J.; Fan, S.; Zhang, Z. The in vitro and in vivo toxicity of graphene quantum dots. Biomater. 2014, 35(19), 5041–5048. DOI: 10.1016/j.biomaterials.2014.03.021.
  44. Yan, H.; Wang, Q.; Wang, J.; Shang, W.; Xiong, Z.; Zhao, L.; Sun, X.; Tian, J.; Kang, F.; Yun, S.-H. Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Long-Term Visualization of Local Pharmacokinetics. Adv. Mater. 2023, 35(15), e2210809. DOI: 10.1002/adma.202210809.
  45. Yu, W. W.; Chang, E.; Drezek, R.; Colvin, V. L. Water-soluble quantum dots for biomedical applications. Biochem Biophys. Res. Commun. 2006, 348(3), 781–786..
  46. Zhang, W.; Chen, G.; Wang, J.; Ye, B.-C.; Zhong, X. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg. Chem. 2009, 48(20), 9723–9731. DOI: 10.1021/ic9010949.
  47. Liu, W.; Choi, H. S.; Zimmer, J. P.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 2007, 129(47), 14530–14531..
  48. Haque, M.; Kalita, M.; Chamlagai, D.; Lyndem, S.; Koley, S.; Kumari, P.; Aguan, K.; Singha Roy, A. Human serum albumin directed formation of cadmium telluride quantum dots: Applications in biosensing, anti-bacterial activities and cell cytotoxicity measurements. Int. J. Biol. Macromol. 2024, 268(Pt 1), 131862. DOI: 10.1016/j.ijbiomac.2024.131862.
  49. Ma, N.; Marshall, A. F.; Gambhir, S. S.; Rao, J. Facile synthesis, silanization, and biodistribution of biocompatible quantum dots. Small 2010, 6(14), 1520–1528. DOI: 10.1002/smll.200902409.
  50. Su, Y.; Ji, X.; He, Y. Water-Dispersible Fluorescent Silicon Nanoparticles and their Optical Applications. Adv. Mater. 2016, 28(47), 10567–10574. DOI: 10.1002/adma.201601173.
  51. Tang, J.; Chu, B.; Wang, J.; Song, B.; Su, Y.; Wang, H.; He, Y. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat. Commun. 2019, 10(1), 4057. DOI: 10.1038/s41467-019-12088-7.
  52. Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121(7), 2768–2780. DOI: 10.1172/JCI45600.
  53. Jokerst, J. V.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44(10), 1050–1060. DOI: 10.1021/ar200106e.
  54. Erogbogbo, F.; Yong, K.-T.; Hu, R.; Law, W.-C.; Ding, H.; Chang, C.-W.; Prasad, P. N.; Swihart, M. T. Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 2010, 4(9), 5131–5138. DOI: 10.1021/nn101016f.
  55. Hanada, S.; Fujioka, K.; Futamura, Y.; Manabe, N.; Hoshino, A.; Yamamoto, K. Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: their cytotoxicity and biological effect. Int. J. Mol. Sci. 2013, 14(1), 1323–1334. DOI: 10.3390/ijms14011323.
  56. Chen, G.; Teng, Z.; Su, X.; Liu, Y.; Lu, G. Unique Biological Degradation Behavior of Stöber Mesoporous Silica Nanoparticles from Their Interiors to Their Exteriors. J. Biomed Nanotechnol. 2015, 11(4), 722–729..
  57. Yamada, H.; Urata, C.; Aoyama, Y.; Osada, S.; Yamauchi, Y.; Kuroda, K. Preparation of Colloidal Mesoporous Silica Nanoparticles with Different Diameters and Their Unique Degradation Behavior in Static Aqueous Systems. Chem. Mater. 2012, 24(8), 1462–1471. DOI: 10.1021/cm3001688.
  58. He, Q.; Shi, J.; Zhu, M.; Chen, Y.; Chen, F. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010, 131(1–3), 314–320. DOI: 10.1016/j.micromeso.2010.01.009.
  59. Toy, R.; Peiris, P. M.; Ghaghada, K. B.; Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomed. (Lond) 2014, 9(1), 121–134. DOI: 10.2217/nnm.13.191.
  60. Truong, N. P.; Whittaker, M. R.; Mak, C. W.; Davis, T. P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug. Deliv. 2015, 12(1), 129–142. DOI: 10.1517/17425247.2014.950564.
  61. Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011, 5(7), 5390–5399. DOI: 10.1021/nn200365a.
  62. He, Q.; Zhang, Z.; Gao, F.; Li, Y.; Shi, J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 2011, 7(2), 271–280. DOI: 10.1002/smll.201001459.
  63. Cauda, V.; Argyo, C.; Bein, T. Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J. Mater. Chem. 2010, 20(39). DOI: 10.1039/c0jm01390k.
  64. He, X.; Nie, H.; Wang, K.; Tan, W.; Wu, X.; Zhang, P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem. 2008, 80(24), 9597–9603. DOI: 10.1021/ac801882g.
  65. Vivero-Escoto, J. L.; Taylor-Pashow, K. M.; Huxford, R. C.; Della Rocca, J.; Okoruwa, C.; An, H.; Lin, W.; Lin, W. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 2011, 7(24), 3519–3528. DOI: 10.1002/smll.201100521.
  66. Souris, J. S.; Lee, C.-H.; Cheng, S.-H.; Chen, C.-T.; Yang, C.-S.; Ho, J.-a. A.; Mou, C.-Y.; Lo, L.-W. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomater. 2010, 31(21), 5564–5574. DOI: 10.1016/j.biomaterials.2010.03.048.
  67. Wang, C.; Yan, C.; An, L.; Zhao, H.; Song, S.; Yang, S. Fe3O4 assembly for tumor accurate diagnosis by endogenous GSH responsive T2/T1 magnetic relaxation conversion. J. Mater. Chem. B 2021, 9(37), 7734–7740. DOI: 10.1039/d1tb01018b.
  68. Guan, G.; Zhang, C.; Liu, H.; Wang, Y.; Dong, Z.; Lu, C.; Nan, B.; Yue, R.; Yin, X.; Zhang, X. B.; et al. Ternary Alloy PtWMn as a Mn Nanoreservoir for High-Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew. Chem. Int. Ed. Engl. 2022, 61(31), e202117229. DOI: 10.1002/anie.202117229.
  69. Liu, Y.; Teng, L.; Yin, B.; Meng, H.; Yin, X.; Huan, S.; Song, G.; Zhang, X.-B. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem. Rev. 2022, 122(6), 6850–6918. DOI: 10.1021/acs.chemrev.1c00875.
  70. Zeng, J.; Cheng, M.; Wang, Y.; Wen, L.; Chen, L.; Li, Z.; Wu, Y.; Gao, M.; Chai, Z. pH-Responsive Fe(III)-Gallic Acid Nanoparticles for In Vivo Photoacoustic-Imaging-Guided Photothermal Therapy. Adv. Healthc. Mater. 2016, 5(7), 772–780. DOI: 10.1002/adhm.201500898.
  71. Wang, S.; Zhang, L.; Zhao, J.; He, M.; Huang, Y.; Zhao, S. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci. Adv. 2021, 7(12). DOI: 10.1126/sciadv.abe3588.
  72. Zhang, W.; Wang, J.; Su, L.; Chen, H.; Zhang, L.; Lin, L.; Chen, X.; Song, J.; Yang, H. Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Sci. China Chem. 2020, 63(9), 1315–1322. DOI: 10.1007/s11426-020-9775-y.
  73. Zhao, J.; Jin, G.; Weng, G.; Li, J.; Zhu, J.; Zhao, J. Recent advances in activatable fluorescence imaging probes for tumor imaging. Drug Discov. Today 2017, 22(9), 1367–1374. DOI: 10.1016/j.drudis.2017.04.006.
  74. Yang, W.; Yang, S.; Jiang, L.; Zhou, Y.; Yang, C.; Deng, C. Tumor microenvironment triggered biodegradation of inorganic nanoparticles for enhanced tumor theranostics. RSC Adv. 2020, 10(45), 26742–26751. DOI: 10.1039/d0ra04651e.
  75. Liu, F.; Li, X.-L.; Zhou, H. Biodegradable MnO2 nanosheet based DNAzyme-recycling amplification towards: Sensitive detection of intracellular MicroRNAs. Talanta 2020, 206, 120199. DOI: 10.1016/j.talanta.2019.120199.
  76. Wei, M.; Bai, J.; Shen, X.; Lou, K.; Gao, Y.; Lv, R.; Wang, P.; Liu, X.; Zhang, G. Glutathione-Exhausting Nanoprobes for NIR-II Fluorescence Imaging-Guided Surgery and Boosting Radiation Therapy Efficacy via Ferroptosis in Breast Cancer. ACS Nano 2023, 17(12), 11345–11361. DOI: 10.1021/acsnano.3c00350.
  77. Lu, J.; Li, Z.; Lu, M.; Fan, N.; Zhang, W.; Li, P.; Tang, Y.; Yin, X.; Zhang, W.; Wang, H.; et al. Assessing Early Atherosclerosis by Detecting and Imaging of Hypochlorous Acid and Phosphorylation Using Fluorescence Nanoprobe. Adv. Mater. 2023, 35(52), e2307008. DOI: 10.1002/adma.202307008.
  78. Sabuncu, S.; Yildirim, A. Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer. Nano Converg. 2021, 8(1), 39. DOI: 10.1186/s40580-021-00287-2.
  79. Feng, Q.; Zhang, W.; Yang, X.; Li, Y.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy. Adv. Healthc. Mater. 2018, 7(5), 1700957. DOI: 10.1002/adhm.201700957.
  80. Wu, J.; Williams, G. R.; Niu, S.; Gao, F.; Tang, R.; Zhu, L.-M. A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Adv. Sci. (Weinh.) 2019, 6(14), 1802001. DOI: 10.1002/advs.201802001.
  81. Meng, X.; Yi, Y.; Meng, Y.; Lv, G.; Jiang, X.; Wu, Y.; Yang, W.; Yao, Y.; Xu, H.; Bu, W. Self-Enhanced Acoustic Impedance Difference Strategy for Detecting the Acidic Tumor Microenvironment. ACS Nano 2022, 16(3), 4217–4227. DOI: 10.1021/acsnano.1c10173.
  82. Cohen, M. L. Changing patterns of infectious disease. Nature 2000, 406(6797), 762–767.
  83. Huo, M.; Wang, L.; Zhang, H.; Zhang, L.; Chen, Y.; Shi, J. Construction of Single-Iron-Atom Nanocatalysts for Highly Efficient Catalytic Antibiotics. Small 2019, 15(31), e1901834. DOI: 10.1002/smll.201901834.
  84. Lu, M.-M.; Ge, Y.; Qiu, J.; Shao, D.; Zhang, Y.; Bai, J.; Zheng, X.; Chang, Z.-M.; Wang, Z.; Dong, W.-F.; et al. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int. J. Nanomed.2018, 13, 7697–7709. DOI: 10.2147/IJN.S181168.
  85. Gao, L.; Wang, Y.; Li, Y.; Xu, M.; Sun, G.; Zou, T.; Wang, F.; Xu, S.; Da, J.; Wang, L. Biomimetic biodegradable Ag@Au nanoparticle-embedded ureteral stent with a constantly renewable contact-killing antimicrobial surface and antibiofilm and extraction-free properties. Acta Biomater. 2020, 114, 117–132. DOI: 10.1016/j.actbio.2020.07.025.
  86. Zhang, W.; Yang, C.; Lei, Z.; Guan, G.; He, S.-A.; Zhang, Z.; Zou, R.; Shen, H.; Hu, J. New Strategy for Specific Eradication of Implant-Related Infections Based on Special and Selective Degradability of Rhenium Trioxide Nanocubes. ACS Appl. Mater. Interfaces 2019, 11(29), 25691–25701. DOI: 10.1021/acsami.9b07359.
  87. Rabe, K. F.; Watz, H. Chronic obstructive pulmonary disease. Lancet 2017, 389(10082), 1931–1940. DOI: 10.1016/S0140-6736(17)31222-9.
  88. Ti, H.; Zhou, Y.; Liang, X.; Li, R.; Ding, K.; Zhao, X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J. Med. Chem. 2019, 62 (13), 5944–5978. DOI: 10.1021/acs.jmedchem.8b01520.
  89. Li, Z.; Luo, G.; Hu, W.-P.; Hua, J.-L.; Geng, S.; Chu, P. K.; Zhang, J.; Wang, H.; Yu, X.-F. Mediated Drug Release from Nanovehicles by Black Phosphorus Quantum Dots for Efficient Therapy of Chronic Obstructive Pulmonary Disease. Angew. Chem. Int. Ed. Engl. 2020, 59(46), 20568–20576. DOI: 10.1002/anie.202008379.
  90. Wang, X.; Zhong, X.; Lei, H.; Geng, Y.; Zhao, Q.; Gong, F.; Yang, Z.; Dong, Z.; Liu, Z.; Cheng, L. Hollow Cu2Se Nanozymes for Tumor Photothermal-Catalytic Therapy. Chem. of Mater. 2019, 31(16), 6174–6186. DOI: 10.1021/acs.chemmater.9b01958.
  91. Xi, J.; Wei, G.; Wu, Q.; Xu, Z.; Liu, Y.; Han, J.; Fan, L.; Gao, L. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater. Sci. 2019, 7(10), 4131–4141. DOI: 10.1039/c9bm00705a.
  92. Xu, B.; Wang, H.; Wang, W.; Gao, L.; Li, S.; Pan, X.; Wang, H.; Yang, H.; Meng, X.; Wu, Q.; et al. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew. Chem. Int. Ed. Engl. 2019, 58(15), 4911–4916. DOI: 10.1002/anie.201813994.
  93. Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L. R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10(12), 11000–11011. DOI: 10.1021/acsnano.6b05810.
  94. Liu, Y.; Guo, Z.; Li, F.; Xiao, Y.; Zhang, Y.; Bu, T.; Jia, P.; Zhe, T.; Wang, L. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS Appl. Mater. Interfaces 2019, 11(35), 31649–31660. DOI: 10.1021/acsami.9b10096.
  95. Wang, X.; Fan, L.; Cheng, L.; Sun, Y.; Wang, X.; Zhong, X.; Shi, Q.; Gong, F.; Yang, Y.; Ma, Y.; et al. Biodegradable Nickel Disulfide Nanozymes with GSH-Depleting Function for High-Efficiency Photothermal-Catalytic Antibacterial Therapy. iScience 2020, 23(7), 101281. DOI: 10.1016/j.isci.2020.101281.
  96. Zhang, Z.; Wang, X.; Liu, J.; Yang, H.; Tang, H.; Li, J.; Luan, S.; Yin, J.; Wang, L.; Shi, H. Structural Element of Vitamin U-Mimicking Antibacterial Polypeptide with Ultrahigh Selectivity for Effectively Treating MRSA Infections. Angew. Chem. Int. Ed. Engl. 2024, 63(7), e202318011. DOI: 10.1002/anie.202318011.
  97. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44(10), 893–902. DOI: 10.1021/ar2000259.
  98. Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41(7), 2590–2605. DOI: 10.1039/c1cs15246g.
  99. Yang, P.; Quan, Z.; Hou, Z.; Li, C.; Kang, X.; Cheng, Z.; Lin, J. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 2009, 30(27), 4786–4795. DOI: 10.1016/j.biomaterials.2009.05.038.
  100. Arias, L. S.; Pessan, J. P.; Vieira, A. P. M.; Lima, T. M. T. d.; Delbem, A. C. B.; Monteiro, D. R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiot. (Basel) 2018, 7(2). DOI: 10.3390/antibiotics7020046.
  101. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33(10), 2373–2387. DOI: 10.1007/s11095-016-1958-5.
  102. Zhang, Y.; Fu, X.; Jia, J.; Wikerholmen, T.; Xi, K.; Kong, Y.; Wang, J.; Chen, H.; Ma, Y.; Li, Z.; et al. Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12(39), 43408–43421. DOI: 10.1021/acsami.0c12042.
  103. Li, M.; Li, J.; Chen, J.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet Membrane Biomimetic Magnetic Nanocarriers for Targeted Delivery and in Situ Generation of Nitric Oxide in Early Ischemic Stroke. ACS Nano 2020, 14(2), 2024–2035. DOI: 10.1021/acsnano.9b08587.
  104. Voon, S. H.; Kiew, L. V.; Lee, H. B.; Lim, S. H.; Noordin, M. I.; Kamkaew, A.; Burgess, K.; Chung, L. Y. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. Small 2014, 10(24), 4993–5013. DOI: 10.1002/smll.201401416.
  105. Felsher, D. W. Cancer revoked: oncogenes as therapeutic targets. Nat. Rev. Cancer. 2003, 3(5), 375–380.
  106. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 2011, 61(4), 250–281. DOI: 10.3322/caac.20114.
  107. Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci. 2009, 24(2), 259–268. DOI: 10.1007/s10103-008-0539-1.
  108. Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 2013, 42(12), 5323–5351. DOI: 10.1039/c3cs35531d.
  109. Liu, J.; Ohta, S.-I.; Sonoda, A.; Yamada, M.; Yamamoto, M.; Nitta, N.; Murata, K.; Tabata, Y. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Control Release 2007, 117(1), 104–110.
  110. Gao, F.; Sun, M.; Ma, W.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. A Singlet Oxygen Generating Agent by Chirality-dependent Plasmonic Shell-Satellite Nanoassembly. Adv. Mater. 2017, 29(18), 1606864. DOI: 10.1002/adma.201606864.
  111. Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces 2017, 9(46), 40077–40086. DOI: 10.1021/acsami.7b13421.
  112. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10(9), 3318–3323. DOI: 10.1021/nl100996u.
  113. Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015, 9(1). DOI: 10.1021/acsnano.5b00021.
  114. Fernandes, N.; Rodrigues, C. F.; Moreira, A. F.; Correia, I. J. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater. Sci. 2020, 8 (11), 2990–3020. DOI: 10.1039/d0bm00222d.
  115. Gellini, C.; Feis, A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoust. 2021, 23, 100281. DOI: 10.1016/j.pacs.2021.100281.
  116. Wang, J.; Wu, X.; Shen, P.; Wang, J.; Shen, Y.; Shen, Y.; Webster, T. J.; Deng, J. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Int. J. Nanomed.2020, 15, 1903–1914. DOI: 10.2147/IJN.S239751.
  117. Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 2018, 19, 146–187. DOI: 10.1016/j.nantod.2018.02.010.
  118. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128(6), 2115–2120.
  119. Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8(12), 935–939. DOI: 10.1038/nmat2564.
  120. Zhou, Z.; Wang, Y.; Yan, Y.; Zhang, Q.; Cheng, Y. Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation. ACS Nano 2016, 10(4), 4863–4872. DOI: 10.1021/acsnano.6b02058.
  121. Dumas, A.; Couvreur, P. Palladium: a future key player in the nanomedical field? Chem. Sci. 2015, 6(4), 2153–2157. DOI: 10.1039/c5sc00070j.
  122. Wei, X.; Huang, H.; Guo, J.; Li, N.; Li, Q.; Zhao, T.; Yang, G.; Cai, L.; Yang, H.; Wu, C.; et al. Biomimetic Nano-Immunoactivator via Io nic Metabolic Modulation for Strengthened NIR-II Photothermal Immunotherapy. Small 2023, 19(49), e2304370. DOI: 10.1002/smll.202304370.
  123. Wang, S.; Li, K.; Chen, Y.; Chen, H.; Ma, M.; Feng, J.; Zhao, Q.; Shi, J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomater. 2015, 39, 206–217. DOI: 10.1016/j.biomaterials.2014.11.009.
  124. Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem. Int. Ed. Engl. 2016, 55(47), 14569–14574. DOI: 10.1002/anie.201606643.
  125. Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47(14), 5109–5124. DOI: 10.1039/c7cs00838d.
  126. Lin, H.; Wang, Y.; Gao, S.; Chen, Y.; Shi, J. Theranostic 2D Tantalum Carbide (MXene). Adv. Mater. 2018, 30(4). DOI: 10.1002/adma.201703284.
  127. Chen, R.; Wang, X.; Yao, X.; Zheng, X.; Wang, J.; Jiang, X. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 2013, 34(33), 8314–8322. DOI: 10.1016/j.biomaterials.2013.07.034.
  128. Zheng, Y.; Chen, J.; Song, X. R.; Chang, M. Q.; Feng, W.; Huang, H.; Jia, C. X.; Ding, L.; Chen, Y.; Wu, R. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy via activating cGAS-STING pathway. Biomaterials 2023, 293, 121988. DOI: 10.1016/j.biomaterials.2022.121988.