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1. Introduction 

Nature created organometallic chemistry with the cobalt-carbon bond of vitamin B12 millions of years ago. 

Nowadays, organometallic compounds and reaction intermediates form the backbone of countless technological 

advances that shape our modern world [1]. From catalysis and materials science to nanotechnology [2–7], 

organometallic chemistry lies at the heart of innovations that impact energy production [8–10], sustainable 

practices [5,6,11–13] including CO2 conversion [14–18] and utilization, and medical therapies [19–25]. As the 

field continues to evolve from its hard core, including the role of key ligands in catalysis [26–34] and energy 

storage [35–38], so too does its capacity to address pressing global challenges, including climate change, 

sustainable resource management, and the development of advanced functional materials. 

Organometallic Science serves as an international platform dedicated to disseminating high-impact research 

and forward-looking perspectives that drive the discipline into new scientific and technological frontiers. By 

fostering a deeper understanding of organometallic compounds and nanocompounds and their multifaceted 

applications, the journal is committed to shaping the future of the field and inspiring the next generation of chemists 

and interdisciplinary researchers. Organometallic Science will publish communications, full research articles, 

perspective articles, account articles and comprehensive review articles, enhancing innovative findings and global 

awareness of the importance and relevance of organometallic chemistry and guiding the field towards the future, 

enabling multidisciplinary researchers to stay at the forefront of new developments.  

2. The Role of Organometallic Chemistry in Modern Innovation 

The profound impact of organometallic chemistry on modern science and technology cannot be overstated. 

Organometallic compounds, which feature metal-carbon bonds, have demonstrated unparalleled versatility and 

functionality, positioning them as essential components in a wide array of applications. From the synthesis of 

complex organic molecules to the development of advanced materials with tunable properties, organometallic 

chemistry has been a crucial contributor to contemporary scientific endeavors. 

Furthermore, as the global community increasingly prioritizes sustainable and efficient technologies, 

organometallic chemistry offers unique solutions through catalytic transformations, renewable energy systems, 

and the creation of multifunctional materials. These advances are not only essential for technological innovation 

but also for addressing environmental and societal challenges. 

By bridging the gap between fundamental research and practical applications, organometallic chemistry 

continues to shape industries as diverse as pharmaceuticals, energy, environmental science, and electronics. The 

interdisciplinary nature of the field highlights its importance and calls for continued exploration and innovation. 
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3. Advanced Materials and Nanotechnology 

The versatility of organometallic compounds makes them indispensable in the development of advanced 

materials with tailored properties. These materials find applications in electronics, photonics, energy conversion, 

catalysis, nanomedicine and functional devices, where the unique electronic and structural characteristics of 

organometallic compounds enable groundbreaking performance. 

In the realm of nanotechnology, organometallic compounds contribute to the synthesis of nanomaterials with 

remarkable precision and functionality. Organometallic polymers [12,13,36–38], metal-organic frameworks 

(MOFs) [16,36], carbon nanodots (CNDs) [39], graphene-based systems [40], and metal-containing dendrimers 

[24] are just a few examples of how these compounds are shaping the next generation of nanoscale devices and 

materials. 

In energy applications, for example, organometallic systems facilitate catalytic processes that enable efficient 

hydrogen production and storage, as well as carbon capture [5] and conversion [14–18]. Meanwhile, in the realm 

of electronics and photonics, metal-containing polymers [6,11–13] and nanocomposites offer promising avenues 

for developing flexible electronics and optoelectronic devices. 

As the need for advanced, multifunctional materials grows, the field of organometallic chemistry will 

continue to play a critical role in creating solutions that meet modern technological demands. 

4. Catalysis: A Driving Force of Green and Sustainable Chemistry 

Catalysis is undeniably one of the most impactful domains of organometallic chemistry, profoundly 

influencing both industrial and academic research. Organometallic catalysts enable the transformation of simple 

molecules into complex products with remarkable efficiency and selectivity [1]. These catalysts, whether operating 

in homogeneous or heterogeneous systems [3], are fundamental to processes that minimize energy consumption 

and reduce environmental footprints [5,6]. 

The development of organometallic catalysts has advanced significantly, driven by a desire to achieve greater 

activity, stability, and recyclability. Researchers are now designing catalysts that not only exhibit high efficiency 

but also align with the principles of green chemistry [5,6,35]. Examples include catalysts for carbon dioxide 

fixation [14–18], catalysts for water splitting [41,42], hydrogenation reaction [6,7] under mild conditions, and the 

selective functionalization of hydrocarbons[8]. 

Moreover, mechanistic studies and computational analyses have deepened our understanding of catalytic 

cycles, enabling the rational design of novel catalysts with enhanced performance. As the chemical industry seeks 

more sustainable solutions, organometallic catalysis will continue to be a crucial to innovation. 

Recent advances in organometallic catalysts with nanomaterial supports have led to the science of 

nanoparticle catalysis or nanocatalysis [15]. Organometallic metal-organic frameworks (MOFs) [36,38] have 

emerged as versatile catalysts, combining the structural tunability of organic linkers with the catalytic activity of 

metal centers to facilitate a wide range of chemical transformations with high efficiency and selectivity. 

Innovations such as N-heterocyclic carbene (NHC)-stabilized metal nanoparticles [26,31–34], metal clusters on 

supports [30,43], and organometallic framework-derived nanomaterials [36,38,44] have demonstrated exceptional 

catalytic performance in processes like selective hydrogenation [7], C–C coupling [2], and CO2 conversion [32]. 

These breakthroughs are enabling the design of multifunctional catalysts wcarbonyl 

ith enhanced stability, selectivity, and recyclability, driving progress in sustainable chemical transformations 

and advanced material applications. 

5. Medicinal Chemistry and Biomedical Applications 

Organometallic chemistry holds tremendous potential in the realm of 30 

 chemistry, where metal-containing complexes offer unique therapeutic properties [23]. Transition metals, 

for instance, can stabilize reactive intermediates or facilitate ligand exchange reactions, leading to the design of 

drugs with novel mechanisms of action. 

Research in this area is particularly focused on developing metal-based anticancer agents, antimicrobial 

compounds, and imaging probes. Platinum-based chemotherapeutics, such as cisplatin and its derivatives, have 

long been used in cancer treatment [19], while new metal-based agents continue to be investigated for their 

potential to target disease pathways with improved efficacy and reduced toxicity [19–24]. Ferrocenyl compounds 

and their derivatives have been investigated as promising candidates for cancer therapy, leveraging the unique 

redox properties of the ferrocene core to induce oxidative stress by the Fenton reaction and disrupt cellular function, 

while their versatile structural modification enables targeted drug design and enhanced therapeutic efficacy [20–

24]. 
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The application of organometallic compounds in diagnostics and targeted drug delivery is also expanding. 

Metallodrugs and coordination complexes offer unique opportunities for selective action and controlled release, 

making them promising candidates in the fight against cancer and infectious diseases [24]. 

6. Theoretical and Computational Approaches 

The integration of theoretical and computational methods with experimental research is revolutionizing 

organometallic chemistry including monometallic [45,46] and cluster complexes [47,48]. By employing chemistry 

libraries [49], computational chemistry [50,51], and machine learning algorithms [52], researchers will be able 

model complex reactions, predict catalyst performance, and simulate molecular interactions with unprecedented 

accuracy. 

The ability to rationalize experimental observations through density functional theory (DFT) calculations, 

molecular dynamics simulations, and data-driven predictions enables a deeper understanding of bonding, 

electronic structures, and reaction pathways [27,45–48]. Furthermore, the adoption of artificial intelligence in 

organometallic research will accelerate discoveries by identifying patterns and predicting optimal synthetic routes 

[52]. 

As computational power continues to grow, the synergy between theoretical models and experimental 

validation will remain vital to pushing the boundaries of organometallic chemistry. 

7. The Future of Organometallic Chemistry 

Looking ahead, the field of organometallic chemistry will play a crucial role in addressing the scientific and 

technological challenges of the 21st century. By integrating fundamental insights with innovative applications, 

Organometallic Science will continue to shape sustainable practices, medical breakthroughs, and the development 

of advanced materials. 

Organometallic Science provides a modern platform for showcasing groundbreaking research. We 

encourage contributions that challenge conventional paradigms, explore novel methodologies, and demonstrate 

the transformative potential of organometallic systems. As the field continues to expand and diversify, our journal 

will remain at the forefront, guiding the global scientific community toward new horizons. 
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