Downloads
Download
Additional Files
Download - Supplementary Materials


This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
A Novel Missense Mutation at EDA2R Gene Identified in a Case Study Associated with Hypohidrotic Ectodermal Dysplasia
Wan Yang 1,†, Siyu Jin 1,†
, Jie Jiang 1
, Wei Ji 1,2,*,‡
and Qing He 1,*,‡
1 State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430000, China
2 Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430000, China
* Correspondence: wei.ji@whu.edu.cn (W.J.); qing.he@whu.edu.cn (Q.H.);
Tel.: +86-131-0061-5376 (W.J.); +86-183-2719-2492 (Q.H.)
† These authors contributed equally as first authors.
‡ These authors share equal senior authorships.
Received: 3 January 2025; Revised: 11 February 2025; Accepted: 25 February 2025; Published: 11 March 2025
Abstract: Hypohidrotic Ectodermal Dysplasia (HED) is a rare genetic disorder characterized by hypodontia, hypohidrosis, and hypotrichosis. The study aims to identify a novel mutation in the EDA2R gene in a 20-year-old female with HED and investigate its impact on the NF-κB signaling pathway. Whole genome sequencing confirmed the mutation, and bioinformatic tools predicted it to be pathogenic by destabilizing the EDA2R structure and weakening its interaction with EDA-A2. Molecular dynamics simulation and binding free energy calculations further revealed reduced hydrogen bond formation in the mutant EDA2R/EDA-A2 complex, while molecular docking and AlphaFold analyses indicated decreased binding to TRAF3 and TRAF6. In vitro experiments demonstrated that cells expressing the mutant EDA2R had significantly reduced proliferation and NF-κB activity, along with impaired nuclear translocation of NF-κB p65. However, Western blot analysis showed that the JNK signaling pathway remained unaffected. This study identifies a novel missense mutation in EDA2R and introduces a new pathogenic mechanism of HED, emphasizing the crucial role of EDA2R in regulating NF-κB signaling.
Keywords:
hypohidrotic ectodermal dysplasia ectodysplasin A2 receptor mutation NF-κBReferences
- Wright, J.T.; Grange, D.K.; Fete, M. Hypohidrotic Ectodermal Dysplasia. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., et al., Eds.; University of Washington: Seattle, WA, USA, 2003. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1112/ (accessed on 6 October 2024).
- Lefebvre, S.; Mikkola, M.L. Ectodysplasin Research—Where to Next? Semin. Immunol. 2014, 26, 220–228. https://doi.org/10.1016/j.smim.2014.05.002.
- Yu, K.; Huang, C.; Wan, F.; et al. Structural Insights into Pathogenic Mechanism of Hypohidrotic Ectodermal Dysplasia Caused by Ectodysplasin a Variants. Nat. Commun. 2023, 14, 767. https://doi.org/10.1038/s41467-023-36367-6.
- Cluzeau, C.; Hadj-Rabia, S.; Jambou, M.; et al. Only Four Genes (EDA1, EDAR, EDARADD, and WNT10A) Account for 90% of Hypohidrotic/Anhidrotic Ectodermal Dysplasia Cases. Hum. Mutat. 2011, 32, 70–72. https://doi.org/10.1002/humu.21384.
- Aftab, H.; Escudero, I.A.; Sahhar, F. X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED): A Case Report and Overview of the Diagnosis and Multidisciplinary Modality Treatments. Cureus 2023, 15, e40383. https://doi.org/10.7759/cureus.40383.
- Fan, H.; Ye, X.; Shi, L.; et al. Mutations in the EDA Gene Are Responsible for X‐linked Hypohidrotic Ectodermal Dysplasia and Hypodontia in Chinese Kindreds. Eur. J. Oral Sci. 2008, 116, 412–417. https://doi.org/10.1111/j.1600-0722.2008.00555.x.
- Liu, X.; Zhao, Y.; Zhu, J. A Novel Mutation in the Collagen Domain of EDA Results in Hypohidrotic Ectodermal Dysplasia by Impacting the Receptor‐binding Capability. Mol. Gen. Gen. Med. 2023, 11, e2119. https://doi.org/10.1002/mgg3.2119.
- Yan, M.; Wang, L.-C.; Hymowitz, S.G.; et al. Two-Amino Acid Molecular Switch in an Epithelial Morphogen That Regulates Binding to Two Distinct Receptors. Science 2000, 290, 523–527. https://doi.org/10.1126/science.290.5491.523.
- Hymowitz, S.G.; Compaan, D.M.; Yan, M.; et al. The Crystal Structures of EDA-A1 and EDA-A2. Structure 2003, 11, 1513–1520. https://doi.org/10.1016/j.str.2003.11.009.
- Gao, Y.; Jiang, X.; Wei, Z.; et al. The EDA/EDAR/NF-κB Pathway in Non-Syndromic Tooth Agenesis: A Genetic Perspective. Front. Genet. 2023, 14, 1168538. https://doi.org/10.3389/fgene.2023.1168538.
- Verhelst, K.; Gardam, S.; Borghi, A.; et al. XEDAR Activates the Non-Canonical NF-κB Pathway. Biochem. Biophys. Res. Commun. 2015, 465, 275–280. https://doi.org/10.1016/j.bbrc.2015.08.019.
- Sinha, S.K.; Zachariah, S.; Quiñones, H.I.; et al. Role of TRAF3 and -6 in the Activation of the NF-κB and JNK Pathways by X-Linked Ectodermal Dysplasia Receptor. J. Biol. Chem. 2002, 277, 44953–44961. https://doi.org/10.1074/jbc.M207923200.
- Prodi, D.A.; Pirastu, N.; Maninchedda, G.; et al. EDA2R Is Associated with Androgenetic Alopecia. J. Investig. Dermatol. 2008, 128, 2268–2270. https://doi.org/10.1038/jid.2008.60.
- Özen, S.D.; Kir, S. Ectodysplasin A2 Receptor Signaling in Skeletal Muscle Pathophysiology. Trends Mol. Med. 2024, 30, 471–483. https://doi.org/10.1016/j.molmed.2024.02.002.
- Lolli, F.; Pallotti, F.; Rossi, A.; et al. Androgenetic Alopecia: A Review. Endocrine 2017, 57, 9–17. https://doi.org/10.1007/s12020-017-1280-y.
- Wisniewski, S.A.; Trzeciak, W.H. A New Mutation Resulting in the Truncation of the TRAF6-Interacting Domain of XEDAR: A Possible Novel Cause of Hypohidrotic Ectodermal Dysplasia: Figure 1. J. Med. Genet. 2012, 49, 499–501. https://doi.org/10.1136/jmedgenet-2012-100877.
- Zeng, B.; Lu, H.; Xiao, X.; et al. Novel EDA Mutation in X‐linked Hypohidrotic Ectodermal Dysplasia and Genotype–Phenotype Correlation. Oral Dis. 2015, 21, 994–1000. https://doi.org/10.1111/odi.12376.
- Raimondi, D.; Tanyalcin, I.; Ferté, J.; et al. DEOGEN2: Prediction and Interactive Visualization of Single Amino Acid Variant Deleteriousness in Human Proteins. Nucleic Acids Res. 2017, 45, W201–W206. https://doi.org/10.1093/nar/gkx390.
- Jagadeesh, K.A.; Wenger, A.M.; Berger, M.J.; et al. M-CAP Eliminates a Majority of Variants of Uncertain Significance in Clinical Exomes at High Sensitivity. Nat. Genet. 2016, 48, 1581–1586. https://doi.org/10.1038/ng.3703.
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. https://doi.org/10.1016/j.ajhg.2016.08.016.
- Vaser, R.; Adusumalli, S.; Leng, S.N.; et al. SIFT Missense Predictions for Genomes. Nat. Protoc. 2016, 11, 1–9. https://doi.org/10.1038/nprot.2015.123.
- Quang, D.; Chen, Y.; Xie, X. DANN: A Deep Learning Approach for Annotating the Pathogenicity of Genetic Variants. Bioinformatics 2015, 31, 761–763. https://doi.org/10.1093/bioinformatics/btu703.
- Choi, Y.; Sims, G.E.; Murphy, S.; et al. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. https://doi.org/10.1371/journal.pone.0046688.
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; et al. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. https://doi.org/10.1038/nmeth0410-248.
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; et al. MutationTaster2: Mutation Prediction for the Deep-Sequencing Age. Nat. Methods 2014, 11, 361–362. https://doi.org/10.1038/nmeth.2890.
- Qi, H.; Zhang, H.; Zhao, Y.; et al. MVP Predicts the Pathogenicity of Missense Variants by Deep Learning. Nat. Commun. 2021, 12, 510. https://doi.org/10.1038/s41467-020-20847-0.
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; et al. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. https://doi.org/10.1038/s41592-022-01488-1.
- Jumper, J.; Evans, R.; Pritzel, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2.
- Varadi, M.; Bertoni, D.; Magana, P.; et al. AlphaFold Protein Structure Database in 2024: Providing Structure Coverage for over 214 Million Protein Sequences. Nucleic Acids Res. 2024, 52, D368–D375. https://doi.org/10.1093/nar/gkad1011.
- Case, D.A.; Aktulga, H.M.; Belfon, K.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. https://doi.org/10.1021/acs.jcim.3c01153.
- Nguyen, H.; Maier, J.; Huang, H.; et al. Folding Simulations for Proteins with Diverse Topologies Are Accessible in Days with a Physics-Based Force Field and Implicit Solvent. J. Am. Chem. Soc. 2014, 136, 13959–13962. https://doi.org/10.1021/ja5032776.
- Onufriev, A.V.; Case, D.A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48, 275–296. https://doi.org/10.1146/annurev-biophys-052118-115325.
- Zhao, Z.; Zhang, T.; Li, T.; et al. A Novel EDAR Variant Identified in Non-Syndromic Tooth Agenesis: Insights from Molecular Dynamics. Arch. Oral Biol. 2023, 146, 105600. https://doi.org/10.1016/j.archoralbio.2022.105600.
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. https://doi.org/10.1021/ct400341p.
- Pierce, B.G.; Wiehe, K.; Hwang, H.; et al. ZDOCK Server: Interactive Docking Prediction of Protein–Protein Complexes and Symmetric Multimers. Bioinformatics 2014, 30, 1771–1773. https://doi.org/10.1093/bioinformatics/btu097.
- Izadi, S.; Anandakrishnan, R.; Onufriev, A.V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. https://doi.org/10.1021/jz501780a.
- Miller, B.R.; McGee, T.D.; Swails, J.M.; et al. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. https://doi.org/10.1021/ct300418h.
- Dufour, W.; Alawbathani, S.; Jourdain, A.-S.; et al. Monoallelic and Biallelic Variants in LEF1 Are Associated with a New Syndrome Combining Ectodermal Dysplasia and Limb Malformations Caused by Altered WNT Signaling. Genet. Med. 2022, 24, 1708–1721. https://doi.org/10.1016/j.gim.2022.04.022.
- Yu, M.; Fan, Z.; Wong, S.W.; et al. Lrp6 Dynamic Expression in Tooth Development and Mutations in Oligodontia. J. Dent. Res. 2021, 100, 415–422. https://doi.org/10.1177/0022034520970459.
- Ahmed, H.A.; El-Kamah, G.Y.; Rabie, E.; et al. Gene Mutations of the Three Ectodysplasin Pathway Key Players (EDA, EDAR, and EDARADD) Account for More than 60% of Egyptian Ectodermal Dysplasia: A Report of Seven Novel Mutations. Genes 2021, 12, 1389. https://doi.org/10.3390/genes12091389.
- Chassaing, N.; Bourthoumieu, S.; Cossee, M.; et al. Mutations inEDAR Account for One-Quarter of Non-ED1-Related Hypohidrotic Ectodermal Dysplasia. Hum. Mutat. 2006, 27, 255–259. https://doi.org/10.1002/humu.20295.
- Schneider, P.; Street, S.L.; Gaide, O.; et al. Mutations Leading to X-Linked Hypohidrotic Ectodermal Dysplasia Affect Three Major Functional Domains in the Tumor Necrosis Factor Family Member Ectodysplasin-A *. J. Biol. Chem. 2001, 276, 18819–18827. https://doi.org/10.1074/jbc.M101280200.
- Petersheim, D.; Massaad, M.J.; Lee, S.; et al. Mechanisms of Genotype-Phenotype Correlation in Autosomal Dominant Anhidrotic Ectodermal Dysplasia with Immune Deficiency. J. Allergy Clin. Immunol. 2018, 141, 1060–1073.e3. https://doi.org/10.1016/j.jaci.2017.05.030.
- Hoesel, B.; Schmid, J.A. The Complexity of NF-κB Signaling in Inflammation and Cancer. Mol. Cancer 2013, 12, 86. https://doi.org/10.1186/1476-4598-12-86.
- Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF Family Cytokines. Semin. Immunol. 2014, 26, 253–266. https://doi.org/10.1016/j.smim.2014.05.004.