Downloads
Download
Additional Files
Download - Supplementary Materials


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Global Research Trends and Hotspots in Meibomian Gland Dysfunction (2014–2023): A Comprehensive Bibliometric and Visualization Analysis
Qian Liu 1, Fangkun Zhao 2
, Jun Liu 1
, Minmei Guo 1
, Chengyu Jiang 1
, Tao Yu 1
, Ting Wang 1
, Tzu-Cheng Sung 1
, Jun Kong 2
and Akon Higuchi 1,3,*
1 State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
2 Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
3 Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
* Correspondence: higuchi@ncu.edu.tw or higuchi@wmu.edu.cn; Tel.: +86-577-88068822; Fax: +86-086-577-88832083
Received: 21 January 2025; Revised: 11 March 2025; Accepted: 12 March 2025; Published: 17 March 2025
Abstract: This study aimed to explore the global research landscape, emerging hotspots, and advancements in Meibomian Gland Dysfunction (MGD) over the last decade through a bibliometric and visualization analysis for regenerative medicine strategy to treat MGD patients. Data were collected from the Web of Science Core Collection, covering the period from 2014 to 2023. VOSviewer and CiteSpace were used to analyze and visualize publication trends, contributions by countries and institutions, co-authorship analysis, journal impact, and keyword co-occurrence. Emerging topics were identified using keyword citation burst analysis. A total of 1271 publications were included. Four major research hotspots were identified: (1) etiology and pathogenesis, (2) advancements in diagnostic technologies, (3) therapeutic innovations, and (4) epidemiological trends. The United States and Yonsei University were the leading contributors in terms of publication and citation counts. Ocular Surface, Cornea, and Investigative Ophthalmology & Visual Science were the top journals by productivity and impact. The study revealed significant progress in MGD research and highlighted key areas requiring further investigation, including the establishment of global diagnostic standards and targeted therapies in regenerative medicine. These findings provide a roadmap for future collaborative efforts and strategic research directions in regenerative medicine of the field.
Keywords:
meibomian gland dysfunction bibliometric analysis research trends VOSviewer CiteSpaceReferences
- Bu, J.; Wu, Y.; Cai, X.; et al. Hyperlipidemia induces meibomian gland dysfunction. Ocul. Surf. 2019, 17, 777–786. https://doi.org/10.1016/j.jtos.2019.06.002.
- Butovich, I.A. Meibomian glands, meibum, and meibogenesis. Exp. Eye Res. 2017, 163, 2–16. https://doi.org/10.1016/j.exer.2017.06.020.
- Nelson, J.D.; Shimazaki, J.; Benitez-del-Castillo, J.M.; et al. The international workshop on meibomian gland dysfunction: Report of the definition and classification subcommittee. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1930–1937. https://doi.org/10.1167/iovs.10-6997b.
- Nichols, K.K. The international workshop on meibomian gland dysfunction: Introduction. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1917–1921. https://doi.org/10.1167/iovs.10-6997.
- Nichols, K.K.; Foulks, G.N.; Bron, A.J.; et al. The international workshop on meibomian gland dysfunction: Executive summary. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1922–1929. https://doi.org/10.1167/iovs.10-6997a.
- Cooper, I.D. Bibliometrics basics. J. Med. Libr. Assoc. 2015, 103, 217–218. https://doi.org/10.3163/1536-5050.103.4.013.
- Shu, X.; Liu, Y.; He, F.; Gong, Y.; Li, J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024, 10, e26044. https://doi.org/10.1016/j.heliyon.2024.e26044.
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3.
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert. Opin. Biol. Ther. 2014, 14, 1295–1317. https://doi.org/10.1517/14712598.2014.920813.
- Zhao, F.; Du, F.; Zhang, J.; et al. Trends in Research Related to Keratoconus From 2009 to 2018: A Bibliometric and Knowledge Mapping Analysis. Cornea 2019, 38, 847–854. https://doi.org/10.1097/ico.0000000000001984.
- Sabe, M.; Pillinger, T.; Kaiser, S.; et al. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. https://doi.org/10.1016/j.neubiorev.2022.104608.
- Pei, Z.; Chen, S.; Ding, L.; et al. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J. Control. Release 2022, 352, 211–241. https://doi.org/10.1016/j.jconrel.2022.10.023.
- Devos, P.; Ménard, J. Trends in Worldwide Research in Hypertension Over the Period 1999-2018: A Bibliometric Study. Hypertension 2020, 76, 1649–1655. https://doi.org/10.1161/hypertensionaha.120.15711.
- Ghorbani, F.; Feizabadi, M.; Farzanegan, R.; et al. An Investigation of Topics and Trends of Tracheal Replacement Studies Using Co-Occurrence Analysis. Tissue Eng. Part B Rev. 2017, 23, 118–127. https://doi.org/10.1089/ten.TEB.2016.0254.
- Zhao, F.; Du, F.; Shi, D.; et al. Mapping research trends of retinal vein occlusion from 2009 to 2018: A bibliometric analysis. PeerJ 2019, 7, e7603. https://doi.org/10.7717/peerj.7603.
- Tsubota, K.; Yokoi, N.; Shimazaki, J.; et al. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society. Ocul. Surf. 2017, 15, 65–76. https://doi.org/10.1016/j.jtos.2016.09.003.
- Messmer, E.M. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch. Arztebl. Int. 2015, 112, 71–81. https://doi.org/10.3238/arztebl.2015.0071.
- Chhadva, P.; Goldhardt, R.; Galor, A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology 2017, 124, S20–S26. https://doi.org/10.1016/j.ophtha.2017.05.031.
- Craig, J.P.; Chen, Y.H.; Turnbull, P.R. Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1965–1970. https://doi.org/10.1167/iovs.14-15764.
- Toyos, R.; McGill, W.; Briscoe, D. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study. Photomed. Laser Surg. 2015, 33, 41–46. https://doi.org/10.1089/pho.2014.3819.
- Bron, A.J.; Tomlinson, A.; Foulks, G.N.; et al. Rethinking dry eye disease: A perspective on clinical implications. Ocul. Surf. 2014, 12, S1–S31. https://doi.org/10.1016/j.jtos.2014.02.002.
- Asbell, P.A.; Maguire, M.G.; Pistilli, M.; et al. n-3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease. N. Engl. J. Med. 2018, 378, 1681–1690. https://doi.org/10.1056/NEJMoa1709691.
- Foulks, G.N.; Forstot, S.L.; Donshik, P.C.; et al. Clinical guidelines for management of dry eye associated with Sjögren disease. Ocul. Surf. 2015, 13, 118–132. https://doi.org/10.1016/j.jtos.2014.12.001.
- Yamaguchi, T. Inflammatory Response in Dry Eye. Investig. Ophthalmol. Vis. Sci. 2018, 59, Des192–Des199. https://doi.org/10.1167/iovs.17-23651.
- Liu, R.; Rong, B.; Tu, P.; et al. Analysis of Cytokine Levels in Tears and Clinical Correlations After Intense Pulsed Light Treating Meibomian Gland Dysfunction. Am. J. Ophthalmol. 2017, 183, 81–90. https://doi.org/10.1016/j.ajo.2017.08.021.
- Milner, M.S.; Beckman, K.A.; Luchs, J.I.; et al. Dysfunctional tear syndrome: Dry eye disease and associated tear film disorders—New strategies for diagnosis and treatment. Curr. Opin. Ophthalmol. 2017, 27, 3–47. https://doi.org/10.1097/01.icu.0000512373.81749.b7.
- Sanchez, V.; Galor, A.; Jensen, K.; et al. Relationships between ocular surface sphingomyelinases, Meibum and Tear Sphingolipids, and clinical parameters of meibomian gland dysfunction. Ocul. Surf. 2022, 25, 101–107. https://doi.org/10.1016/j.jtos.2022.06.003.
- Suzuki, T.; Sutani, T.; Nakai, H.; et al. The Microbiome of the Meibum and Ocular Surface in Healthy Subjects. Investig. Ophthalmol. Vis. Sci. 2020, 61, 18. https://doi.org/10.1167/iovs.61.2.18.
- Galor, A.; Sanchez, V.; Jensen, A.; et al. Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. Ocul. Surf. 2022, 23, 87–95. https://doi.org/10.1016/j.jtos.2021.11.011.
- Luo, S.; Djotyan, G.P.; Joshi, R.; et al. Modeling meibum secretion: Alternatives for obstructive Meibomian Gland Dysfunction (MGD). Ocul. Surf. 2024, 31, 56–62. https://doi.org/10.1016/j.jtos.2023.11.005.
- Nagar, S.; Ajouz, L.; Nichols, K.K.; et al. Relationship Between Human Meibum Lipid Composition and the Severity of Meibomian Gland Dysfunction: A Spectroscopic Analysis. Investig. Ophthalmol. Vis. Sci. 2023, 64, 22. https://doi.org/10.1167/iovs.64.10.22.
- Borchman, D.; Ramakrishnan, V.; Henry, C.; et al. Differences in Meibum and Tear Lipid Composition and Conformation. Cornea 2020, 39, 122–128. https://doi.org/10.1097/ico.0000000000002095.
- Borchman, D.; Ramasubramanian, A. Human meibum chain branching variability with age, gender and meibomian gland dysfunction. Ocul. Surf. 2019, 17, 327–335. https://doi.org/10.1016/j.jtos.2018.12.005.
- Du, Y.L.; Peng, X.; Liu, Y.; et al. Ductal Hyperkeratinization and Acinar Renewal Abnormality: New Concepts on Pathogenesis of Meibomian Gland Dysfunction. Curr. Issues Mol. Biol. 2023, 45, 1889–1901. https://doi.org/10.3390/cimb45030122.
- Braich, P.S.; Howard, M.K.; Singh, J.S. Dyslipidemia and its association with meibomian gland dysfunction. Int. Ophthalmol. 2016, 36, 469–476. https://doi.org/10.1007/s10792-015-0149-4.
- Akowuah, P.K.; Owusu, E.; Senanu, E.N.; et al. Association between Dyslipidemia and Meibomian Gland Dysfunction: A Systematic Review and Meta-Analysis. Optom. Vis. Sci. 2023, 100, 211–217. https://doi.org/10.1097/opx.0000000000001994.
- Pinna, A.; Blasetti, F.; Zinellu, A.; et al. Meibomian gland dysfunction and hypercholesterolemia. Ophthalmology 2013, 120, 2385–2389. https://doi.org/10.1016/j.ophtha.2013.05.002.
- Osae, E.A.; Bullock, T.; Chintapalati, M.; et al. Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production. Int. J. Mol. Sci. 2020, 21, 8772. https://doi.org/10.3390/ijms21228772.
- Knop, E.; Knop, N.; Millar, T.; et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1938–1978. https://doi.org/10.1167/iovs.10-6997c.
- Mizoguchi, S.; Iwanishi, H.; Arita, R.; et al. Ocular surface inflammation impairs structure and function of meibomian gland. Exp. Eye Res. 2017, 163, 78–84. https://doi.org/10.1016/j.exer.2017.06.011.
- Qu, J.Y.; Xie, H.T.; Xiao, Y.T.; et al. The inhibition of p38 MAPK blocked inflammation to restore the functions of rat meibomian gland epithelial cells. Exp. Eye Res. 2023, 231, 109470. https://doi.org/10.1016/j.exer.2023.109470.
- Zhao, S.; Shen, Y.; Wu, S.; et al. TIPE2 Inhibits MGD Inflammation by Regulating Macrophage Polarization. J. Pers. Med. 2023, 13, 492. https://doi.org/10.3390/jpm13030492.
- Jun, I.; Kim, B.R.; Park, S.Y.; et al. Interleukin-4 stimulates lipogenesis in meibocytes by activating the STAT6/PPARγ signaling pathway. Ocul. Surf. 2020, 18, 575–582. https://doi.org/10.1016/j.jtos.2020.04.015.
- Blasiak, J.; Pawlowska, E.; Sobczuk, A.; et al. The Aging Stress Response and Its Implication for AMD Pathogenesis. Int. J. Mol. Sci. 2020, 21, 8840. https://doi.org/10.3390/ijms21228840.
- Jester, J.V.; Parfitt, G.J.; Brown, D.J. Meibomian gland dysfunction: Hyperkeratinization or atrophy? BMC Ophthalmol. 2015, 15, 156. https://doi.org/10.1186/s12886-015-0132-x.
- Moreno, I.; Verma, S.; Gesteira, T.F.; et al. Recent advances in age-related meibomian gland dysfunction (ARMGD). Ocul. Surf. 2023, 30, 298–306. https://doi.org/10.1016/j.jtos.2023.11.003.
- Suzuki, T.; Kitazawa, K.; Cho, Y.; et al. Alteration in meibum lipid composition and subjective symptoms due to aging and meibomian gland dysfunction. Ocul. Surf. 2022, 26, 310–317. https://doi.org/10.1016/j.jtos.2021.10.003.
- Liu, S.; Richards, S.M.; Lo, K.; et al. Changes in gene expression in human meibomian gland dysfunction. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2727–2740. https://doi.org/10.1167/iovs.10-6482.
- Vergés, C.; Giménez-Capitán, A.; Ribas, V.; et al. Gene expression signatures in conjunctival fornix aspirates of patients with dry eye disease associated with Meibomian gland dysfunction. A proof-of-concept study. Ocul. Surf. 2023, 30, 42–50. https://doi.org/10.1016/j.jtos.2023.07.010.
- Hwang, H.S.; Parfitt, G.J.; Brown, D.J.; et al. Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD). Exp. Eye Res. 2017, 163, 37–45. https://doi.org/10.1016/j.exer.2017.02.008.
- Ning, Z.; Guo, X.; Liu, X.; et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat. Commun. 2022, 13, 2187. https://doi.org/10.1038/s41467-022-29846-9.
- Kim, S.W.; Xie, Y.; Nguyen, P.Q.; et al. PPARγ regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells (hMGEC). Ocul. Surf. 2018, 16, 463–469. https://doi.org/10.1016/j.jtos.2018.07.004.
- Jester, J.V.; Potma, E.; Brown, D.J. PPARγ Regulates Mouse Meibocyte Differentiation and Lipid Synthesis. Ocul. Surf. 2016, 14, 484–494. https://doi.org/10.1016/j.jtos.2016.08.001.
- Suhalim, J.L.; Parfitt, G.J.; Xie, Y.; et al. Effect of desiccating stress on mouse meibomian gland function. Ocul. Surf. 2014, 12, 59–68. https://doi.org/10.1016/j.jtos.2013.08.002.
- Wang, L.X.; Deng, Y.P. Androgen and meibomian gland dysfunction: From basic molecular biology to clinical applications. Int. J. Ophthalmol. 2021, 14, 915–922. https://doi.org/10.18240/ijo.2021.06.18.
- Krenzer, K.L.; Dana, M.R.; Ullman, M.D.; et al. Effect of androgen deficiency on the human meibomian gland and ocular surface. J. Clin. Endocrinol. Metab. 2000, 85, 4874–4882. https://doi.org/10.1210/jcem.85.12.7072.
- Schirra, F.; Suzuki, T.; Richards, S.M.; et al. Androgen control of gene expression in the mouse meibomian gland. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3666–3675. https://doi.org/10.1167/iovs.05-0426.
- Ibrahim, O.M.; Dogru, M.; Matsumoto, Y.; et al. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. PLoS ONE 2014, 9, e99328. https://doi.org/10.1371/journal.pone.0099328.
- Nezzar, H.; Mbekeani, J.N.; Noblanc, A.; et al. Investigation of antioxidant systems in human meibomian gland and conjunctival tissues. Exp. Eye Res. 2017, 165, 99–104. https://doi.org/10.1016/j.exer.2017.09.005.
- Yang, X.; Reneker, L.W.; Zhong, X.; et al. Meibomian gland stem/progenitor cells: The hunt for gland renewal. Ocul. Surf. 2023, 29, 497–507. https://doi.org/10.1016/j.jtos.2023.07.004.
- Guo, Y.; Zhang, H.; Zhao, Z.; et al. Hyperglycemia Induces Meibomian Gland Dysfunction. Investig. Ophthalmol. Vis. Sci. 2022, 63, 30. https://doi.org/10.1167/iovs.63.1.30.
- Arita, R.; Mizoguchi, T.; Kawashima, M.; et al. Meibomian Gland Dysfunction and Dry Eye Are Similar but Different Based on a Population-Based Study: The Hirado-Takushima Study in Japan. Am. J. Ophthalmol. 2019, 207, 410–418. https://doi.org/10.1016/j.ajo.2019.02.024.
- Chan, T.C.Y.; Chow, S.S.W.; Wan, K.H.N.; et al. Update on the association between dry eye disease and meibomian gland dysfunction. Hong Kong Med. J. 2019, 25, 38–47. https://doi.org/10.12809/hkmj187331.
- Liang, Q.; Pan, Z.; Zhou, M.; et al. Evaluation of Optical Coherence Tomography Meibography in Patients With Obstructive Meibomian Gland Dysfunction. Cornea 2015, 34, 1193–1199. https://doi.org/10.1097/ico.0000000000000563.
- Napoli, P.E.; Coronella, F.; Satta, G.M.; et al. A Simple Novel Technique of Infrared Meibography by Means of Spectral-Domain Optical Coherence Tomography: A Cross-Sectional Clinical Study. PLoS ONE 2016, 11, e0165558. https://doi.org/10.1371/journal.pone.0165558.
- Yoo, Y.S.; Na, K.S.; Byun, Y.S.; et al. Examination of Gland Dropout Detected on Infrared Meibography by Using Optical Coherence Tomography Meibography. Ocul. Surf. 2017, 15, 130–138.e1. https://doi.org/10.1016/j.jtos.2016.10.001.
- Wang, D.H.; Tang, J.C.; Hao, X.J.; et al. Application of optical coherence tomography and keratograph in the measurements of lower lid margin thickness. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 2327–2334. https://doi.org/10.1007/s00417-023-05990-w.
- Randon, M.; Aragno, V.; Abbas, R.; et al. In vivo confocal microscopy classification in the diagnosis of meibomian gland dysfunction. Eye 2019, 33, 754–760. https://doi.org/10.1038/s41433-018-0307-9.
- Liu, Y.; Wang, Y.; Jin, X.; et al. Observation of Conjunctiva-Associated Lymphoid Tissue With In Vivo Confocal Microscopy in Healthy Patients and Patients With Meibomian Gland Dysfunction. Cornea 2022, 41, 1129–1136. https://doi.org/10.1097/ico.0000000000002910.
- Zheng, Q.; Xue, Y.; Zhong, X.; et al. Correlation Study Between Abnormal Morphology of Meibomian Glands and Meibum in Patients With Dry Eye Disease Under in vivo Confocal Microscopy. Front. Med. 2021, 8, 793338. https://doi.org/10.3389/fmed.2021.793338.
- Ibrahim, O.M.; Matsumoto, Y.; Dogru, M.; et al. The efficacy, sensitivity, and specificity of in vivo laser confocal microscopy in the diagnosis of meibomian gland dysfunction. Ophthalmology 2010, 117, 665–672. https://doi.org/10.1016/j.ophtha.2009.12.029.
- Arita, R. Meibography: A Japanese Perspective. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES48–DES55. https://doi.org/10.1167/iovs.17-23631.
- Deng, Y.; Wang, Q.; Luo, Z.; et al. Quantitative analysis of morphological and functional features in Meibography for Meibomian Gland Dysfunction: Diagnosis and Grading. EClinicalMedicine 2021, 40, 101132. https://doi.org/10.1016/j.eclinm.2021.101132.
- Xiao, P.; Luo, Z.; Deng, Y.; et al. An automated and multiparametric algorithm for objective analysis of meibography images. Quant. Imaging Med. Surg. 2021, 11, 1586–1599. https://doi.org/10.21037/qims-20-611.
- Mounika, V.; Kamath, S.J.; Tejaswi, P.; et al. A simple technique of meibography for morphological and functional evaluation of meibomian glands in dry eye conditions. Indian. J. Ophthalmol. 2023, 71, 1420–1425. https://doi.org/10.4103/ijo.Ijo_2823_22.
- Finis, D.; Ackermann, P.; Pischel, N.; et al. Evaluation of Meibomian Gland Dysfunction and Local Distribution of Meibomian Gland Atrophy by Non-contact Infrared Meibography. Curr. Eye Res. 2015, 40, 982–989. https://doi.org/10.3109/02713683.2014.971929.
- Sheppard, J.D.; Nichols, K.K. Dry Eye Disease Associated with Meibomian Gland Dysfunction: Focus on Tear Film Characteristics and the Therapeutic Landscape. Ophthalmol. Ther. 2023, 12, 1397–1418. https://doi.org/10.1007/s40123-023-00669-1.
- Ahn, H.; Kim, B.Y.; Kim, J.; et al. How Long to Continue Eyelid Hygiene to Treat Meibomian Gland Dysfunction. J. Clin. Med. 2022, 11, 529. https://doi.org/10.3390/jcm11030529.
- Guillon, M.; Maissa, C.; Wong, S. Symptomatic relief associated with eyelid hygiene in anterior blepharitis and MGD. Eye Contact Lens 2012, 38, 306–312. https://doi.org/10.1097/ICL.0b013e3182658699.
- Tanabe, H.; Kaido, M.; Kawashima, M.; et al. Effect of Eyelid Hygiene Detergent on Obstructive Meibomian Gland Dysfunction. J. Oleo Sci. 2019, 68, 67–78. https://doi.org/10.5650/jos.ess18161.
- Kremers, I.; Hohberger, B.; Bergua, A. Infrared thermography: Different options of thermal eyelid warming. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1515–1522. https://doi.org/10.1007/s00417-020-04673-0.
- Landsend, E.C.S.; Olafsson, J.; Lai, X.; et al. Change in Ocular Surface Staining during Eyelid Warming Is Related to Tear Cytokine Levels. J. Ophthalmol. 2022, 2022, 5103231. https://doi.org/10.1155/2022/5103231.
- Wang, D.H.; Liu, X.Q.; Hao, X.J.; et al. Effect of the Meibomian Gland Squeezer for Treatment of Meibomian Gland Dysfunction. Cornea 2018, 37, 1270–1278. https://doi.org/10.1097/ico.0000000000001682.
- Foulks, G.N.; Borchman, D.; Yappert, M.; et al. Topical azithromycin and oral doxycycline therapy of meibomian gland dysfunction: A comparative clinical and spectroscopic pilot study. Cornea 2013, 32, 44–53. https://doi.org/10.1097/ICO.0b013e318254205f.
- Shtein, R.M.; Shen, J.F.; Kuo, A.N.; et al. Autologous Serum-Based Eye Drops for Treatment of Ocular Surface Disease: A Report by the American Academy of Ophthalmology. Ophthalmology 2020, 127, 128–133. https://doi.org/10.1016/j.ophtha.2019.08.018.
- Piyacomn, Y.; Kasetsuwan, N.; Reinprayoon, U.; et al. Efficacy and Safety of Intense Pulsed Light in Patients With Meibomian Gland Dysfunction-A Randomized, Double-Masked, Sham-Controlled Clinical Trial. Cornea 2020, 39, 325–332. https://doi.org/10.1097/ico.0000000000002204.
- Jiang, X.; Yuan, H.; Zhang, M.; et al. The Efficacy and Safety of New-Generation Intense Pulsed Light in the Treatment of Meibomian Gland Dysfunction-Related Dry Eye: A Multicenter, Randomized, Patients-Blind, Parallel-Control, Non-Inferiority Clinical Trial. Ophthalmol. Ther. 2022, 11, 1895–1912. https://doi.org/10.1007/s40123-022-00556-1.
- Whang, W.J.; Yun, J.; Koh, K. Intense pulsed-light treatment improves objective optical quality in patients with meibomian gland dysfunction. BMC Ophthalmol. 2023, 23, 191. https://doi.org/10.1186/s12886-023-02939-9.
- Hu, J.; Zhu, S.; Liu, X. Efficacy and safety of a vectored thermal pulsation system (Lipiflow®) in the treatment of meibomian gland dysfunction: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 25–39. https://doi.org/10.1007/s00417-021-05363-1.
- Tao, J.P.; Shen, J.F.; Aakalu, V.K.; et al. Thermal Pulsation in the Management of Meibomian Gland Dysfunction and Dry Eye: A Report by the American Academy of Ophthalmology. Ophthalmology 2023, 130, 1336–1341. https://doi.org/10.1016/j.ophtha.2023.07.009.
- Ma, X.; Lu, Y. Efficacy of Intraductal Meibomian Gland Probing on Tear Function in Patients With Obstructive Meibomian Gland Dysfunction. Cornea 2016, 35, 725–730. https://doi.org/10.1097/ico.0000000000000777.
- Fukuoka, S.; Arita, R. Tear film lipid layer increase after diquafosol instillation in dry eye patients with meibomian gland dysfunction: A randomized clinical study. Sci. Rep. 2019, 9, 9091. https://doi.org/10.1038/s41598-019-45475-7.
- Arita, R.; Kawashima, M.; Ito, M.; et al. Clinical safety and efficacy of vitamin D3 analog ointment for treatment of obstructive meibomian gland dysfunction. BMC Ophthalmol. 2017, 17, 84. https://doi.org/10.1186/s12886-017-0482-7.
- Al-Namaeh, M. A systematic review of the effect of omega-3 supplements on meibomian gland dysfunction. Ther. Adv. Ophthalmol. 2020, 12, 2515841420952188. https://doi.org/10.1177/2515841420952188.
- Oleñik, A.; Mahillo-Fernández, I.; Alejandre-Alba, N.; et al. Benefits of omega-3 fatty acid dietary supplementation on health-related quality of life in patients with meibomian gland dysfunction. Clin. Ophthalmol. 2014, 8, 831–836. https://doi.org/10.2147/opth.S62470.
- Epitropoulos, A.T.; Donnenfeld, E.D.; Shah, Z.A.; et al. Effect of Oral Re-esterified Omega-3 Nutritional Supplementation on Dry Eyes. Cornea 2016, 35, 1185–1191. https://doi.org/10.1097/ico.0000000000000940.
- Hassanzadeh, S.; Varmaghani, M.; Zarei-Ghanavati, S.; et al. Global Prevalence of Meibomian Gland Dysfunction: A Systematic Review and Meta-Analysis. Ocul. Immunol. Inflamm. 2021, 29, 66–75. https://doi.org/10.1080/09273948.2020.1755441.
- Wang, M.T.M.; Muntz, A.; Lim, J.; et al. Ageing and the natural history of dry eye disease: A prospective registry-based cross-sectional study. Ocul. Surf. 2020, 18, 736–741. https://doi.org/10.1016/j.jtos.2020.07.003.
- Craig, J.P.; Wang, M.T.M.; Ambler, A.; et al. Characterising the ocular surface and tear film in a population-based birth cohort of 45-year old New Zealand men and women. Ocul. Surf. 2020, 18, 808–813. https://doi.org/10.1016/j.jtos.2020.08.005.
- Siak, J.J.; Tong, L.; Wong, W.L.; et al. Prevalence and risk factors of meibomian gland dysfunction: The Singapore Malay eye study. Cornea 2012, 31, 1223–1228. https://doi.org/10.1097/ICO.0b013e31823f0977.
- Wang, M.T.M.; Vidal-Rohr, M.; Muntz, A.; et al. Systemic risk factors of dry eye disease subtypes: A New Zealand cross-sectional study. Ocul. Surf. 2020, 18, 374–380. https://doi.org/10.1016/j.jtos.2020.04.003.