Downloads

Jansen, J. A. The Current State and Future of Oral Health: A Position Paper Exploring the Role of Regenerative Dentistry. Regenerative Medicine and Dentistry. 2025, 2(1), 6. doi: https://doi.org/10.53941/rmd.2025.100006

Review

The Current State and Future of Oral Health: A Position Paper Exploring the Role of Regenerative Dentistry

John A. Jansen

Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; john.jansen@radboudumc.nl

Received: 12 February 2025; Revised: 17 March 2025; Accepted: 20 March 2025; Published: 25 March 2025

Abstract: Regenerative dentistry combines dental science, biology, and technology to develop new therapeutic approaches for treating oral and orofacial problems. It focuses on restoring or regeneration lost or damaged tissues using tissue engineering technology. Current methodologies and methods used in regenerative dentistry are: stem cells, growth factors/biomolecules, tissue engineering and bioactive materials, platelet-rich plasma (PRP), tooth regeneration, and tooth-on-a-chip and organoids. Despite its potential, regenerative dentistry has not met the initial expectations due to unrealistic goals, regulatory challenges, and ethical concerns. Therefore, the field needs a breakthrough discovery with significant clinical impact. It is recommended that future efforts should focus on products with clear clinical need and improving existing materials. In conclusion, regenerative dentistry has great potential, but the research lacks a clear vision and focus. Integration of artificial intelligence (AI) can help guide the field into a new era.

Keywords:

regenerative dentistry tissue engineering stem cells scaffolds growth factors

References

  1. Langer, R.; Vacanti, J.P. Artificial organs. Sci. Am. 1995, 273, 130–133.
  2. Nor, J.E. Tooth regeneration in operative dentistry. Oper. Dent. 2006, 31, 633–642. https://doi.org/10.2341/06-000
  3. Han, J.; Menicanin, D.; Gronthos, S.; et al. Stem cells, tissue engineering, and periodontal regeneration. Aust. Dent. J. 2014, 59 (Suppl. 1), 117–130. https://doi.org/10.1111/adj.12100.
  4. Takahashi K.; Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–667, https://10.1016/j.cell.2006.07.024. doi: 10.1016/j.cell.2006.07.024
  5. Zhang, W.; Yelick, P.C. Craniofacial tissue engineering. Cold Spring Harb. Perspect. Med. 2018, 8, a025775. https://doi.org/10.1101/cshperspect.a025775.
  6. Yelick, P.C.; Sharpe, P.T. Tooth bioengineering and regenerative dentistry. J. Dent. Res. 2019, 98, 1173–1182. https://doi.org/10.1177/0022034519861903.
  7. Zhang, W.; Yelick, P.C. Tooth repair and regeneration: Potential of dental stem cells. Trends Mol. Med. 2021, 27, 501–511. https://doi.org/10.1016/j.molmed.2021.02.005.
  8. Meijer, G.J.; de Bruijn, J.D.; Koole, R.; et al. Cell based bone tissue engineering in jaw defects. Biomaterials 2008, 29, 3053–3061. https://doi.org/10.1016/j.biomaterials.2008.03.012.
  9. Prins, H.J.; Schulten, E.A.J.M.; Ten Bruggenkate, C.M.; et al. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl. Med. 2016, 5, 1362–1374. https://doi.org/10.5966/sctm.2015-0369.
  10. Ivanovski, S.; Han, P.; Peters, O.A.; et al. The therapeutic use of dental mesenchymal stem cells in human clinical trials. J. Dent. Res. 2024, 103, 1173–1184. https://doi.org/10.1177/00220345241261900.
  11. Meijer, G.J.; de Bruijn, J.D.; Koole, R.; et al. CA. Cell-based bone tissue engineering. PLoS Med. 2007, 4, 260–264. https://doi.org/10.1371/journal.pmed.004009.
  12. Wu, V.; Helder, M.N.; Bravenboer, N.; et al. Bone tissue regeneration in the oral and maxillofacial region: A review of the application of stem cells and new strategies to improve vascularization. Stem Cells Int. 2019, 2019, 6279721. https://doi.org/10.1155/2019/6279721.
  13. Cai, J.; Zhang, Y.; Chen, S.; et al. Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen. 2013, 2, 6. https://doi.org/10.1186/2045-9769-2-6.
  14. Xie, H.; Dubey, N.; Shim, W.; et al. Functional odontoblastic-like cells derived from human iPSCs. J. Dent. Res. 2018, 97, 77–83. https://doi.org/10.1177/0022034517730026.
  15. Larsson, L.; Decker, A.M.; Nibali, L.; et al. Regenerative Medicine for periodontal and peri-implant disease. J. Dent. Res. 2016, 95, 255–266. https://doi.org/10.1177/0022034515618887.
  16. Herford, A.S.; Miller, M.; Signorino, F. Maxillofacial defects and the use of growth factors. Oral Maxillofac. Surg. Clin. 2017, 29, 75–78. https://doi.org/10.1016/j.coms.2016.08.006.
  17. Kim, S.G.; Malek, M.; Sigurdsson, A.; et al. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. https://doi.org/10.1111/iej.12954.
  18. Reddy, A.H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 1998, 16, 247–252. https://doi.org/10.1038/nbt0398-247.
  19. Hinsenkamp, M.; Collar, J.F. Growth factors in orthopaedic surgery: Demineralized bone matrix versus recombinant bone morphogenetic proteins. Int. Orthop. 2015, 39, 137–147. https://doi.org/10.1007/s00264-014-2562-0.
  20. Nie, W.B.; Zhang, D.; Wang, L.S. Growth factor gene-modified mesenchymal stem cells in tissue regeneration. Drug Des. Devel. Ther. 2020, 14, 1241–1256. https://doi.org/10.2147/DDDT.S243944.
  21. Blum, J.S.; Barry, M.A.; Mikos, A.G. Bone regeneration through transplantation of genetically modified cells. Clin. Plast. Surg. 2003, 30, 611–620. https://doi.org/10.1016/s0094-1298(03)00079-8.
  22. Ahmad, P.; Della Bella, E.; Stoddart, M.J. Applications of bone morphogenetic proteins in dentistry: A bibliometric analysis. BioMed Res. Int. 2020, 2020, 5971268. https://doi.org/10.1155/2020/5971268.
  23. Freitas, R.M.; Spin-Neto, R.; Marcantonio Junior, E.; et al. Alveolar ridge and maxillary sinus augmentation using rhBMP-2; A systematic review. Clin. Implant Dent. Rel. Res. 2015, 10 (Suppl. 1), 192–201. https://doi.org/10.1111/cid.12156.
  24. Miron, R.J.; Sculean, A.; Cochran, D.L.; et al. Twenty years of enamel matrix derivative: The past, the present and the future. J. Clin. Periodontol. 2016, 43, 668–683. https://doi.org/10.1111/jcpe.12546.
  25. Nagelkerke, A.; Ojansivu, M.; van der Koog, L.; et al. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv. Drug Deliv. Rev. 2021, 175, 113775. https://doi.org/10.1016/j.addr.2021.04.013.
  26. Lim, K.M.; Kim, S.; Yeom, J.; et al. Advanced 3D dynamic culture system with transforming growth factor 3 enhances production of potent extracellular vesicles with modified protein cargoes via upregulation of TGF- signaling. J. Adv. Res. 2023, 47, 57–74. https://doi.org/10.1016/j.jare.2022.09.005.
  27. Alaohali, A.; Salzlechner, C.; Zaugg, L.K.; et al. GSK3 inhibitor-induced dentinogenesis using a hydrogel. J. Dent. Res. 2022, 101, 45–63. https://doi.org/10.1177/00220345211020652.
  28. Temenoff, J.; Mikos, A. Biomaterials: The Intersection of Biology and Materials Science, 2nd ed.; Pearson Prentice Hall: Saddle River, NJ, USA, 2023.
  29. Kokubo, T.; Ito, S.; Huang, Z.T.; et al. CaP-rich layer formed on high strength bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990, 24, 331–343. https://doi.org/10.1002/jbm.820240306.
  30. Wei, L.; Yu, D.; Wang, M.; et al. Dose effects of slow-release bone morphogenetic protein-2 functionalized -tricalcium phosphate in repairing critical-sized bone defects. Tissue Eng. Part A 2020, 26, 120–129. https://doi.org/10.1089/ten.TEA.2019.0161.
  31. Wei, L.; Sun, Y.; Yu, D.; et al. The clinical efficacy and safety of ErhBMP-2/BioCaP/-TCP as a novel bone substitute using the tooth-extraction-socket-healing model: A proof-of-concept randomized clinical trial. J. Clin. Periodontol. 2025, 52, 299–309. https://doi.org/10.1111/jcpe.14084.
  32. Fang, Z.; Guo, M.; Zhou, Q.; et al. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins. Int. J. Biol. Macromo. 2021, 183, 2131–2141. https://doi.org/10/1016/j.ijbiomac.2021.06.028.
  33. Hosseini, F.; Nair, L.S.; Laurencin, C.T. Inductive materials for regenerative engineering. J. Dent. Res. 2021, 100, 1011–1019. https://doi.org/10.1177/00220345211010436.
  34. Davison, N.L.; Su, J.; Yuan, H.; et al. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. Eur. Cell Mater. 2015, 29, 314–329. https://doi.org/10.22203/ecm.v029a24.
  35. Duan, R.; Barbieri, D.; Luo, X.; et al. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes, Biomater. Sci. 2017, 6, 136–145. https://doi.org/10.1039/c7bm00717e.
  36. Stempels, H.W.; Lehr, A.M.; Delawi, D.; et al. Efficacy of biphasic calcium phosphate ceramic with a needle-shaped surface topography versus autograft in instrumental posterolateral spinal fusion. Spine 2024, 49, 1323–1331. https://doi.org/10.1097/BRS.0000000000005075.
  37. Tian, Y.; Chen, C.X.; Xu, X.; et al. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021, 2021, 9950131. https://doi.org/10/1155/2021/9950131.
  38. Kantaros, A. 3D printing in regenerative medicine: Technologies and resources utilized. Int. J. Mol. Sci. 2022, 23, 14621. https://doi.org/10.3390/ijms232314621.
  39. Mota, C.; Camarero-Espinosa, C.; Baker, M.B.; et al. Bioprinting: From tissue and organ development to in vitro models. Chem. Rev. 2020, 120, 11032–11092. https://doi.org/10.1021/acs.chem.rev.9b00789.
  40. Xu, J.; Gou, I.; Li, H.; et al. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 2020, 6, 131–142. https://doi.org/10.1111/adj.12754.
  41. Lang, S.; Loibl, M.; Hermann, M. Platelet-rich plasma in tissue engineering: Hype and Hope. Eur. Surg. Res. 2018, 59, 265–275. https://doi.org/10.1159/000492415.
  42. van den Dolder, J.; Mooren, R.; Vloon, A.P.G.; et al. Platelet-rich plasma: Quantification of growth factor levels and the effect of growth and differentiation of rat bone marrow cells. Tissue Eng. 2006, 12, 3067–3073. https://doi.org/10.1089/ten.2006.12.3067.
  43. Croise, B.; Pare, A.; Joly, A.; et al. Optimized centrifugation preparation of the platelet rich plasma; literature review. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 150–154. https://doi.org/10.1016/j.jormas.2019.07.001.
  44. Macozza, A.D.; McCarthy, M.B.; Chowaniec, D.M.; et al. Platelet-rich plasma differs according to preparation methods and human variability. J. Bone Joint Surg. Am. 2012, 94, 308–310. https://doi.org/10.2106/JBJS.K.00430.
  45. Izumi, K.; Yortchan, W.; Aizawa, Y.; et al. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue engineered oral mucosa equivalents. Jpn. Dent. Sci. Rev. 2023, 59, 365374. https://doi.org/10.1016/j.jdsr.2023.10.002.
  46. Murashima-Suginami, A.; Kiso, H.; Tokita, Y.; et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling. Sci. Adv. 2021, 7, eabf1798. https://doi.org/10.1126/sciadv.abf1798.
  47. Ravi, V.; Murashima-Suginami, A.; Kiso, H.; et al. Advances in tooth agenesis and tooth regeneration. Regen. Ther. 2023, 22, 160–168. https://doi.org/10/1016/j.reth.2023.01.004.
  48. Svanberg, S.; Hirth, E.; Dittrich, P.S. “Periodontal ligament-on-a chip” as a novel tool for studies on the physiology and pathology of periodontal tissues. Adv. Healthcare Mater. 2024, 13, 2303942. https://doi.org/10.1002/adhm.202303942.
  49. Franca, C.M.; Tahayeri, A.; Rodrigues, N.S.; et al. The tooth-on-a chip: A microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip 2020, 20, 405–413. https://doi.org/10.1039/c91c00915a.
  50. Soares, D.G.; Bordini, E.A.F.; Benton Swanson, E.; et al. Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a chip strategies. Clin. Oral Investig. 2021, 25, 4749–4779. https://doi.org/10.1007/s00784-021-04013-4.
  51. Rodriguez y Baena, A.; Casasco, A.; Monti, M. Hypes and hopes of stem cell therapies in dentistry: A review. Stem Cell Rev. Rep. 2022, 18, 1294–1308. https://doi.org/10.1007/s12015-021-10326-4.
  52. Nakao, K.; Morita, R.; Saji, Y.; et al. The development of a bioengineered organ germ method. Nat. Methods 2007, 4, 227–230. https://doi.org/10.1038/nmeth1012.
  53. Jeong, S.Y.; Lee, S.; Choi, W.; et al. Fabrication of dentin-pulp-like organoids using dental pulp stem cells. Cells, 2020, 9, 642. https://doi.org/10.3390/ce.s9030642.
  54. Gao, X.; Wu, Y.; Liao, L.; et al. Oral organoids: Progresses and challenges. J. Dent. Res. 2021, 100, 1–10. https://doi.org/101177/0022034520983808.
  55. Aihara, E.; Mahe, M.M.; Schumacher, M.A.; et al. Characterization of stem progenitor cell cycle using murine circumvallate papilla tastebud organoid. Sci. Rep. 2015, 5, 17185. https://doi.org/10.1038/srep17185.
  56. Li, F.C.; Kishen, A. 3D organoids for regenerative endodontics. Biomolecules 2023, 13, 900. https://doi.org/10.3390/biom13060900.
  57. Franca, C.M.; Balbibot, G.S.; Cunha, D.; et al. In vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs-on-a chip. Acta Biomater. 2022, 150, 58–66. https://doi.org/10.1016/j.actbio.2022.07.060.
  58. Alghamdi, H.S.; Jansen, J.A. The development and future of dental implants. Dent. Mater. J. 2020, 39, 167–172: https://doi.org/10.4012/dmj.2019-140.
  59. Rocuzzo, A.; Imber, J.C.; Marruganti, C.; et al. Clinical outcomes of dental implants in patients with and without history of periodontitis: A 20-year prospective study. J. Clin. Periodontol. 2022, 49, 1346–1356. https://doi.org/10.1111/cpe.13716.
  60. Mason, C. Automated tissue engineering: A major paradigm shift in health care. Med. Device Technol. 2003, 14, 16–18.
  61. Oberweis, C.V.; Marchal, J.A.; Lopez-Ruiz, L.; et al. A worldwide overview of regulatory frameworks for tissue-based products. Tissue Eng. Part B Rev. 2020, 26, 181–196. https://doi.org/10.1089/ten.TEB.2019.0315.
  62. Amaral, C.; Paiva, M.; Rodrigues, A.R.; et al. Global regulatory challenges for medical devices: Impact on innovation and market access. Appl. Sci. 2024, 14, 9304. https://doi.org/10.3390/app14209304.
  63. de Vries, R.B.; Oerlemans, A.; Trommelmans, L.; et al. Ethical aspects of tissue engineering: A review. Tissue Eng. Part B Rev. 2008, 14, 367–373. https://doi.org/10.1089/ten.teb.2008.0199.
  64. Baker, H.B.; McQuilling, J.P.; King, N.M.P. Ethical considerations in tissue engineering research: Case studies in translation. Methods 2016, 15, 135–144. https://doi.org/10.1010/j.ymeth.2015.08.010.
  65. de Kanter, A.J.; Jongsma, K.R.; Verhaar, M.C.; et al. The ethical implications of tissue engineering for regenerative purposes: A systematic review. Tissue Eng. Part B Rev. 2023, 29, 167–180. https://doi.org/10.1089/ten.TEB.2022.0033.
  66. Patini, R.; Staderini, E.; Lajolo, C.; Lopetuso, L.; et al. Relationship between oral microbiotia and periodontal disease: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018, 21, 5775–5788. https://doi.org/10.26355/eurrev_201809_15903.
  67. Frencken, J.E.; Sharma, P.; Stenhouse, L.: et al. Global epidemiology of dental caries and severe periodontitis —A comprehensive review. J. Clin. Periodontol. 2017, 44, 94–105. https://doi.org/10.1111/jcpe.12677.
  68. Schroeder, H.E. Pathobiologie Oraler Strukturen, 3rd ed.; Karger: Basel, Switzerland, 1996. doi: 10.1159/isbn.978-3-318-05016-5
  69. Lindhe, J.; Berglundh, T. The interface between the mucosa and implant. Periodontology 2000 1998, 17, 47–54. https://doi.org/10.1111/j.1600-0757.1998.tb00122.x.
  70. Bruckmann, C.; Walboomers, X.F.; Matsuzaka, K.; et al. Periodontal ligament and gingival fibroblast adhesion to dentin-like textured surfaces. Biomaterials 2005, 26, 339–346. https://doi.org/10.1016/j.biomaterials.2004.02.031.
  71. Abdallah, M.N.; Badran, Z.; Ciobanu, O.; et al. Strategies for optimizing the soft tissue seal around ossointegrated implants. Adv. Healthc. Mater. 2017, 6, 1700549. https://doi.org/10.1002/adhm.201700549.
  72. Farre-Guasch, E.; Bravenboer, N.; Helder, M.N.; et al. Blood vessel formation and bone regeneration potential of the stromal vascular fraction seeded on a calcium phosphate scaffold in the human maxillary sinus floor elevation model. Materials 2018, 11, 161. https://doi.org/10.3390/ma1101061.
  73. Rui, R.; Zhou, L.; He, S. Cancer immunotherapies: Advances and bottlenecks. Front. Immunol. 2023, 14, 1212476, https://doi.org/10.3389/fimmu.2023.1212376.
  74. Rock, L.D.; Akada, G.; Al-Waeli, H.; et al. Canada’s First National Oral Health Research Strategy (2024–2030). J. Dent. Res. 2025, 104, 113–118. https://doi.org/10.1177/00220345241299360.