Downloads

Liu, B., Mu, Y., & Wang, D.-A. hiPSC-Driven Organoid Construction and Application Prospects. Regenerative Medicine and Dentistry. 2025, 2(1), 5. doi: https://doi.org/10.53941/rmd.2025.100005

Perspective

hiPSC-Driven Organoid Construction and Application Prospects

Bangheng Liu 1,2, Yulei Mu 2,3 and Dong-An Wang 1,2,*

1 Department of Biomedical Engineering, Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR 999077, China

2 Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, New Territories, Hong Kong SAR 999077, China

3 Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China

* Correspondence: donganwang@cuhk.edu.hk

Received: 5 March 2025; Revised: 19 March 2025; Accepted: 20 March 2025; Published: 21 March 2025

Abstract: Induced pluripotent stem cell (iPSC)-derived organoid platforms can simulate various target tissues and hold broad application prospects in personalized medicine, disease modeling, drug screening, organ transplantation, and understanding organ development mechanisms. Currently, the development of human iPSC (hiPSC) organoids is gradually shifting towards Matrigel-free and scaffold-free systems, promoting precise control over the composition and structure of these systems and establishing induction protocols for specialized organoids. Researchers are also exploring the construction of multifunctional systems with complex structures and material exchange channels through vascularization, segmented induction, and assembly technologies, though further breakthroughs are needed. In the future, hiPSC organoids are expected to advance towards personalized precision treatment, high-throughput module detection systems, multi-organ integration, and automation. Additionally, when combined with large artificial intelligence models, there is potential to establish hiPSC data and medical platforms, providing support for drug development and clinical decision-making. Moreover, the development of medical AI is anticipated to foster collaboration rather than competition, promoting coordinated growth in the field. For hiPSC-derived platforms, it is crucial to further enhance the ethical review framework to balance radical scientific exploration with conservative public attitudes. Researchers must also optimize or develop new induction protocols to reduce genomic instability and tumorigenic risks, while avoiding the emergence of non-target cells and insufficient functional maturity.

Keywords:

hiPSC organoid multi-organ integration vascularization technology AI personalized medicine

References

  1. Verstegen, M.M.; Coppes, R.P.; Beghin, A.; et al. Clinical applications of human organoids. Nat. Med. 2025, 31, 409–421. doi: 10.1038/s41591-024-03489-3
  2. Xu, Z.; Yang, J.; Xin, X.; et al. Merits and challenges of iPSC-derived organoids for clinical applications. Front. Cell Dev. Biol. 2023, 11, 1188905. doi: 10.3389/fcell.2023.1188905
  3. Kratochvil, M.J.; Seymour, A.J.; Li, T.L.; et al. Engineered materials for organoid systems. Nat. Rev. Mater. 2019, 4, 606–622. doi: 10.1038/s41578-019-0129-9
  4. Kanton, S.; Boyle, M.J.; He, Z.; et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019, 574, 418–422. doi: 10.1038/s41586-019-1654-9
  5. Brazovskaja, A.; Treutlein, B.; Camp, J.G. High-throughput single-cell transcriptomics on organoids. Curr. Opin. Biotechnol. 2019, 55, 167–171. doi: 10.1016/j.copbio.2018.11.002
  6. Shin, J.; Chung, H.; Kumar, H.; et al. 3D bioprinting of human iPSC-Derived kidney organoids using a low-cost, high-throughput customizable 3D bioprinting system. Bioprinting 2024, 38, e00337. doi: 10.1016/j.bprint.2024.e00337
  7. Higuchi, A.; Ling, Q.-D.; Kumar, S.S.; et al. Generation of pluripotent stem cells without the use of genetic material. Lab. Investig. 2015, 95, 26–42. doi: 10.1038/labinvest.2014.132
  8. Kozlowski, M.T.; Crook, C.J.; Ku, H.T. Towards organoid culture without Matrigel. Commun. Biol. 2021, 4, 1387. doi: 10.1038/s42003-021-02910-8
  9. Baker, L.A.; Tiriac, H.; Clevers, H.; et al. Modeling pancreatic cancer with organoids. Trends Cancer 2016, 2, 176–190. doi: 10.1016/j.trecan.2016.03.004
  10. Drakhlis, L.; Devadas, S.B.; Zweigerdt, R. Generation of heart-forming organoids from human pluripotent stem cells. Nat. Protoc. 2021, 16, 5652–5672. doi: 10.1038/s41596-021-00629-8
  11. Lee, S.-G.; Kim, Y.-J.; Son, M.-Y.; et al. Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials 2022, 290, 121860. doi: 10.1016/j.biomaterials.2022.121860
  12. Kulkeaw, K.; Tubsuwan, A.; Tongkrajang, N.; et al. Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ 2020, 8, e9968. doi: 10.7717/peerj.9968
  13. Gleeson, J.P.; Estrada, H.Q.; Yamashita, M.; et al. Development of physiologically responsive human iPSC-derived intestinal epithelium to study barrier dysfunction in IBD. Int. J. Mol. Sci. 2020, 21, 1438. doi: 10.3390/ijms21041438
  14. Estrada, H.Q.; Patel, S.; Rabizadeh, S.; et al. Development of a personalized intestinal fibrosis model using human intestinal organoids derived from induced pluripotent stem cells. Inflamm. Bowel Dis. 2022, 28, 667–679. doi: 10.1093/ibd/izab292
  15. Dai, X.; Wang, X.; Yang, C.; et al. Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Res. Ther. 2022, 13, 377. doi: 10.1186/s13287-022-03023-7
  16. Wen, Z.; Orduno, M.; Liang, Z.; et al. Optimization of vascularized intestinal organoid model. Adv. Healthc. Mater. 2024, 13, 2400977. doi: 10.1002/adhm.202400977
  17. Xue, W.; Li, B.; Liu, H.; et al. Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. Iscience 2023, 26, 105898. doi: 10.1016/j.isci.2022.105898
  18. De Paola, M.; Pischiutta, F.; Comolli, D.; et al. Neural cortical organoids from self-assembling human iPSC as a model to investigate neurotoxicity in brain ischemia. J. Cereb. Blood Flow Metab. 2023, 43, 680–693. doi: 10.1177/0271678X231152023
  19. Weng, Y.; Han, S.; Sekyi, M.T.; et al. Self-assembled matrigel-free iPSC-derived liver organoids demonstrate wide-ranging highly differentiated liver functions. Stem Cells 2023, 41, 126–139. doi: 10.1093/stmcls/sxac090
  20. Kjar, A.; Haschert, M.R.; Zepeda, J.C.; et al. Biofunctionalized gelatin hydrogels support development and maturation of iPSC-derived cortical organoids. Cell Rep. 2024, 43, 114874. doi: 10.1016/j.celrep.2024.114874
  21. Chooi, W.H.; Ng, C.Y.; Ow, V.; et al. Defined alginate hydrogels support spinal cord organoid derivation, maturation, and modeling of spinal cord diseases. Adv. Healthc. Mater. 2023, 12, 2202342. doi: 10.1002/adhm.202202342
  22. Heaton, E.S.; Hu, M.; Liu, T.; et al. Extracellular matrix-derived peptide stimulates the generation of endocrine progenitors and islet organoids from iPSCs. J. Tissue Eng. 2023, 14, 20417314231185858. doi: 10.1177/20417314231185858
  23. Carolina, E.; Kuse, Y.; Okumura, A.; et al. Generation of human iPSC-derived 3D bile duct within liver organoid by incorporating human iPSC-derived blood vessel. Nat. Commun. 2024, 15, 7424. doi: 10.1038/s41467-024-51487-3
  24. Sandilya, S.; Singh, S. Development of islet organoids from human induced pluripotent stem cells in a cross-linked collagen scaffold. Cell Regen. 2021, 10, 38. doi: 10.1186/s13619-021-00099-z
  25. Jiang, S.; Xu, F.; Jin, M.; et al. Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids. Biofabrication 2022, 15, 015006. doi: 10.1088/1758-5090/ac933c
  26. Majumder, J.; Torr, E.E.; Aisenbrey, E.A.; et al. Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels. J. Tissue Eng. 2024, 15, 20417314241230633. doi: 10.1177/20417314241230633
  27. Meijer, E.M.; Koch, S.E.; van Dijk, C.G.; et al. 3D Human iPSC Blood Vessel Organoids as a Source of Flow‐Adaptive Vascular Cells for Creating a Human‐Relevant 3D‐Scaffold Based Macrovessel Model. Adv. Biol. 2023, 7, 2200137. doi: 10.1002/adbi.202200137
  28. Treacy, N.J.; Clerkin, S.; Davis, J.L.; et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact. Mater. 2023, 21, 142–156. doi: 10.1016/j.bioactmat.2022.08.003
  29. Chen, C.; Rengarajan, V.; Kjar, A.; et al. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact. Mater. 2021, 6, 1130–1139. doi: 10.1016/j.bioactmat.2020.10.003
  30. Sridharan, A.; Rajan, S.D.; Muthuswamy, J. Long-term changes in the material properties of brain tissue at the implant–tissue interface. J. Neural Eng. 2013, 10, 066001. doi: 10.1088/1741-2560/10/6/066001
  31. Lancaster, M.A.; Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014, 9, 2329–2340. doi: 10.1038/nprot.2014.158
  32. Muñiz, A.J.; Topal, T.; Brooks, M.D.; et al. Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells. Ann. Clin. Transl. Neurol. 2023, 10, 1239–1253. doi: 10.1002/acn3.51820
  33. Zeleniak, A.; Wiegand, C.; Liu, W.; et al. De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat. Methods 2022, 19, 1306–1319. doi: 10.1038/s41592-022-01583-3
  34. Richardson, T.; Kumta, P.N.; Banerjee, I. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng. Part A 2014, 20, 3198–3211. doi: 10.1089/ten.tea.2013.0659
  35. Ramos, S.A.; Armitage, L.H.; Morton, J.J.; et al. Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Rep. 2023, 18, 829–840. doi: 10.1016/j.stemcr.2023.02.013
  36. Lee, S.-J.; Park, C.; Lee, J.Y.; et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci. Rep. 2015, 5, 11019. doi: 10.1038/srep11019
  37. Lee, J.; Jung, S.; Hong, H.K.; et al. Vascularized tissue on mesh-assisted platform (VT-MAP): A novel approach for diverse organoid size culture and tailored cancer drug response analysis. Lab A Chip 2024, 24, 2208–2223. doi: 10.1039/D3LC01055D
  38. Wang, Z.; McWilliams-Koeppen, H.P.; Reza, H.; et al. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells. Cell Stem Cell 2022, 29, 515–527. e518. doi: 10.1016/j.stem.2022.02.009
  39. Zheng, F.; Xiao, Y.; Liu, H.; et al. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv. Biol. 2021, 5, e2000024. doi: 10.1002/adbi.202000024
  40. Jarak, I.; Varela, C.L.; da Silva, E.T.; et al. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. Eur. J. Med. Chem. 2020, 206, 112526. doi: 10.1016/j.ejmech.2020.112526
  41. Shriky, B.; Kelly, A.; Isreb, M.; et al. Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. J. Colloid Interface Sci. 2020, 565, 119–130. doi: 10.1016/j.jcis.2019.12.096
  42. Goncharuk, O.; Samchenko, Y.; Sternik, D.; et al. Thermosensitive hydrogel nanocomposites with magnetic laponite nanoparticles. Appl. Nanosci. 2020, 10, 4559–4569. doi: 10.1007/s13204-020-01388-w
  43. Fan, R.; Cheng, Y.; Wang, R.; et al. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers 2022, 14, 2379. doi: 10.3390/polym14122379
  44. Patel, N.; Ji, N.; Wang, Y.; et al. Subcutaneous delivery of albumin: Impact of thermosensitive hydrogels. AAPS PharmSciTech 2021, 22, 120. doi: 10.1208/s12249-021-01982-3
  45. Deng, A.; Kang, X.; Zhang, J.; et al. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated. Mater. Sci. Eng. C 2017, 78, 1147–1154. doi: 10.1016/j.msec.2017.04.109
  46. Camp, J.G.; Sekine, K.; Gerber, T.; et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017, 546, 533–538. doi: 10.1038/nature22796
  47. Takebe, T.; Sekine, K.; Enomura, M.; et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013, 499, 481–484. doi: 10.1038/nature12271
  48. Mansour, A.A.; Gonçalves, J.T.; Bloyd, C.W.; et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 2018, 36, 432–441. doi: 10.1038/nbt.4127
  49. Kim, W.; Gwon, Y.; Park, S.; et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact. Mater. 2023, 19, 50–74. doi: 10.1016/j.bioactmat.2022.03.039
  50. Wang, L.; Koui, Y.; Kanegae, K.; et al. Establishment of human induced pluripotent stem cell-derived hepatobiliary organoid with bile duct for pharmaceutical research use. Biomaterials 2024, 310, 122621. doi: 10.1016/j.biomaterials.2024.122621
  51. Kim, H.J.; Kim, G.; Chi, K.Y.; et al. Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Res. Ther. 2023, 14, 19. doi: 10.1186/s13287-023-03235-5
  52. Kim, J.-H.; An, G.H.; Kim, J.-Y.; et al. Human pluripotent stem cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov. 2021, 7, 48. doi: 10.1038/s41420-021-00439-7
  53. Shen, H.; Yu, H.; Li, Q.-y.; et al. Hepatocyte-derived VEGFA accelerates the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via activating hepatic stellate cells. Acta Pharmacol. Sin. 2022, 43, 2917–2928. doi: 10.1038/s41401-022-00907-5
  54. Cakir, B.; Xiang, Y.; Tanaka, Y.; et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 2019, 16, 1169–1175. doi: 10.1038/s41592-019-0586-5
  55. Dao, L.; You, Z.; Lu, L.; et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024, 31, 818–833.e11. doi: 10.1016/j.stem.2024.04.019
  56. Chai, Y.C.; To, S.K.; Simorgh, S.; et al. Spatially Self‐Organized Three‐Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. Adv. Sci. 2024, 11, 2304421. doi: 10.1002/advs.202304421
  57. Ham, O.; Jin, Y.B.; Kim, J.; et al. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem. Biophys. Res. Commun. 2020, 521, 84–90. doi: 10.1016/j.bbrc.2019.10.079
  58. Cadena, M.A.; Sing, A.; Taylor, K.; et al. A 3D bioprinted cortical organoid platform for modeling human brain development. Adv. Healthc. Mater. 2024, 13, 2401603. doi: 10.1002/adhm.202401603
  59. Kistemaker, L.; van Bodegraven, E.J.; de Vries, H.E.; et al. Vascularized human brain organoids: Current possibilities and prospects. Trends Biotechnol. 2025. doi: 10.1016/j.tibtech.2024.11.021
  60. Gonzales-Aloy, E.; Ahmed-Cox, A.; Tsoli, M.; et al. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv. Drug Deliv. Rev. 2023, 196, 114777. doi: 10.1016/j.addr.2023.114777
  61. Quintard, C.; Tubbs, E.; Jonsson, G.; et al. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024, 15, 1452. doi: 10.1038/s41467-024-45710-4
  62. Takasato, M.; Er, P.X.; Chiu, H.S.; et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015, 526, 564–568. doi: 10.1038/nature15695
  63. Nishinakamura, R. Human kidney organoids: Progress and remaining challenges. Nat. Rev. Nephrol. 2019, 15, 613–624. doi: 10.1038/s41581-019-0176-x
  64. Takasato, M.; Er, P.X.; Chiu, H.S.; et al. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc. 2016, 11, 1681–1692. doi: 10.1038/nprot.2016.098
  65. Peng, K.; Xie, W.; Wang, T.; et al. HIF-1α promotes kidney organoid vascularization and applications in disease modeling. Stem Cell Res. Ther. 2023, 14, 336. doi: 10.1186/s13287-023-03528-9
  66. Kim, J.W.; Nam, S.A.; Yi, J.; et al. Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids. Adv. Sci. 2022, 9, 2103526. doi: 10.1002/advs.202103526
  67. Lee, H.N.; Choi, Y.Y.; Kim, J.W.; et al. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip. Nano Converg. 2021, 8, 35. doi: 10.1186/s40580-021-00285-4
  68. Homan, K.A.; Gupta, N.; Kroll, K.T.; et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 2019, 16, 255–262. doi: 10.1038/s41592-019-0325-y
  69. Liu, B.; Wang, D.A. Application of Nanomaterials in the Repair and Regeneration of Lymphatic Organs and Corresponding Biophysical Simulation Strategies. Adv. NanoBiomed Res. 2024, 2400081. doi: 10.1002/anbr.202400081
  70. Nakamura, A.; Murata, D.; Fujimoto, R.; et al. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication 2021, 13, 044103. doi: 10.1088/1758-5090/ac1c99
  71. Agten, H.; Van Hoven, I.; Viseu, S.R.; et al. In vitro and in vivo evaluation of 3D constructs engineered with human iPSC‐derived chondrocytes in gelatin methacryloyl hydrogel. Biotechnol. Bioeng. 2022, 119, 2950–2963. doi: 10.1002/bit.28168
  72. Chi, J.; Wang, S.; Ju, R.; et al. Repair effects of thermosensitive hydrogels combined with iPSC-derived corneal endothelial cells on rabbit corneal endothelial dysfunction. Acta Biomater. 2025, 191, 216–232. doi: 10.1016/j.actbio.2024.11.021
  73. Lu, C.; Le, Q. Advances in Organoid Technology: A Focus on Corneal Limbal Organoids. Stem Cell Rev. Rep. 2024, 20, 1227–1235. doi: 10.1007/s12015-024-10706-6
  74. Ma, S.; Xie, Y.; Wang, Q.; et al. Application of eye organoids in the study of eye diseases. Exp. Eye Res. 2024, 247, 110068. doi: 10.1016/j.exer.2024.110068
  75. Koc, A.C.; Sari, V.; Kocak, G.; et al. Patient-derived cornea organoid model to study metabolomic characterization of rare disease: Aniridia-associated keratopathy. BMC Ophthalmol. 2025, 25, 14. doi: 10.1186/s12886-024-03831-w
  76. Frenz-Wiessner, S.; Fairley, S.D.; Buser, M.; et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat. Methods 2024, 21, 868–881. doi: 10.1038/s41592-024-02172-2
  77. Koike, H.; Iwasawa, K.; Ouchi, R.; et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature 2019, 574, 112–116. doi: 10.1038/s41586-019-1598-0
  78. Workman, M.J.; Mahe, M.M.; Trisno, S.; et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 2017, 23, 49–59. doi: 10.1038/nm.4233
  79. Kishimoto, K.; Iwasawa, K.; Sorel, A.; et al. Directed differentiation of human pluripotent stem cells into diverse organ-specific mesenchyme of the digestive and respiratory systems. Nat. Protoc. 2022, 17, 2699–2719. doi: 10.1038/s41596-022-00733-3
  80. Navoly, G.; McCann, C.J. Dynamic integration of enteric neural stem cells in ex vivo organotypic colon cultures. Sci. Rep. 2021, 11, 15889. doi: 10.1038/s41598-021-95434-4
  81. Pan, W.; Rahman, A.A.; Ohkura, T.; et al. Autologous cell transplantation for treatment of colorectal aganglionosis in mice. Nat. Commun. 2024, 15, 2479. doi: 10.1038/s41467-024-46793-9
  82. Moerkens, R.; Mooiweer, J.; Ramírez-Sánchez, A.D.; et al. An iPSC-derived small intestine-on-chip with self-organizing epithelial, mesenchymal, and neural cells. Cell Rep. 2024, 43, 114247. doi: 10.1016/j.celrep.2024.114247
  83. Laddach, A.; Chng, S.H.; Lasrado, R.; et al. A branching model of lineage differentiation underpinning the neurogenic potential of enteric glia. Nat. Commun. 2023, 14, 5904. doi: 10.1038/s41467-023-41492-3
  84. Qian, X.; Su, Y.; Adam, C.D.; et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 2020, 26, 766–781.e69. doi: 10.1016/j.stem.2020.02.002
  85. Fu, C.-L.; Dong, B.-C.; Jiang, X.; et al. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson’s disease mouse model. Heliyon 2024, 10, e24234. doi: 10.1016/j.heliyon.2024.e24234
  86. Babu, H.W.S.; Kumar, S.M.; Kaur, H.; et al. Midbrain organoids for Parkinson's disease (PD)-A powerful tool to understand the disease pathogenesis. Life Sci. 2024, 345, 122610. doi: 10.1016/j.lfs.2024.122610
  87. Cui, X.; Li, X.; Zheng, H.; et al. Human midbrain organoids: A powerful tool for advanced Parkinson’s disease modeling and therapy exploration. NPJ Park. Dis. 2024, 10, 189. doi: 10.1038/s41531-024-00799-8
  88. Parrotta, E.I.; Lucchino, V.; Zannino, C.; et al. Modeling Sporadic Progressive Supranuclear Palsy in 3D Midbrain Organoids: Recapitulating Disease Features for In Vitro Diagnosis and Drug Discovery. Ann. Neurol. 2025. https://doi.org/10.1002/ana.27172.
  89. Selecky, G.A.; Whitney, K.R.; Krassner, M.M.; et al. Generating a novel and reliable human iPSC‐derived midbrain organoid model of sporadic progressive supranuclear palsy. Alzheimer's Dement. 2025, 20, e093263. doi: 10.1002/alz.093263
  90. Tang, X.-Y.; Wu, S.; Wang, D.; et al. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 2022, 7, 168. doi: 10.1038/s41392-022-01024-9
  91. Barak, M.; Fedorova, V.; Pospisilova, V.; et al. Human iPSC-derived neural models for studying Alzheimer’s disease: From neural stem cells to cerebral organoids. Stem Cell Rev. Rep. 2022, 18, 792–820. doi: 10.1007/s12015-021-10254-3
  92. Kiral, F.R.; Cakir, B.; Tanaka, Y.; et al. Generation of ventralized human thalamic organoids with thalamic reticular nucleus. Cell Stem Cell 2023, 30, 677–688. e675. doi: 10.1016/j.stem.2023.03.007
  93. Shin, D.; Kim, C.N.; Ross, J.; et al. Thalamocortical organoids enable in vitro modeling of 22q11. 2 microdeletion associated with neuropsychiatric disorders. Cell Stem Cell 2024, 31, 421–432.e8. doi: 10.1016/j.stem.2024.01.010
  94. Brás, J.; Henriques, D.; Moreira, R.; et al. Establishment and characterization of human pluripotent stem cells-derived brain organoids to model cerebellar diseases. Sci. Rep. 2022, 12, 12513. doi: 10.1038/s41598-022-16369-y
  95. Huang, W.-K.; Wong, S.Z.H.; Pather, S.R.; et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021, 28, 1657–1670.e10. doi: 10.1016/j.stem.2021.04.006
  96. Leal, H.; Carvalhas-Almeida, C.; Álvaro, A.R.; et al. Modeling hypothalamic pathophysiology in vitro for metabolic, circadian, and sleep disorders. Trends Endocrinol. Metab. 2024, 35, 505–517. doi: 10.1016/j.tem.2024.01.001
  97. Yi, W.; Xue, Y.; Qing, W.; et al. Effective treatment of optic neuropathies by intraocular delivery of MSC-sEVs through augmenting the G-CSF-macrophage pathway. Proc. Natl. Acad. Sci. USA 2024, 121, e2305947121. doi: 10.1073/pnas.2305947121
  98. Wang, J.; Daniszewski, M.; Hao, M.M.; et al. Organelle mapping in dendrites of human iPSC-derived neurons reveals dynamic functional dendritic Golgi structures. Cell Rep. 2023, 42, 112709. doi: 10.1016/j.celrep.2023.112709
  99. Takeuchi, K.; Tabe, S.; Takahashi, K.; et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep. 2023, 42, 113420. doi: 10.1016/j.celrep.2023.113420
  100. Kong, D.; Kwon, D.; Moon, B.; et al. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed. Pharmacother. 2024, 174, 116436. doi: 10.1016/j.biopha.2024.116436
  101. Khan, A.O.; Rodriguez-Romera, A.; Reyat, J.S.; et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 2023, 13, 364–385. doi: 10.1158/2159-8290.CD-22-0199
  102. O’Brien, B.S.; Mokry, R.L.; Schumacher, M.L.; et al. Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. Iscience 2022, 25, 104098. doi: 10.1016/j.isci.2022.104098
  103. Tamai, K.; Sakai, K.; Yamaki, H.; et al. iPSC-derived mesenchymal cells that support alveolar organoid development. Cell Rep. Methods 2022, 2, 100314. doi: 10.1016/j.crmeth.2022.100314
  104. Han, Y.; Tan, L.; Zhou, T.; et al. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell 2022, 29, 1475–1490.e76. doi: 10.1016/j.stem.2022.09.008
  105. Gandikota, C.; Vaddadi, K.; Sivasami, P.; et al. The use of human iPSC‐derived alveolar organoids to explore SARS‐CoV‐2 variant infections and host responses. J. Med. Virol. 2024, 96, e29579. doi: 10.1002/jmv.29579
  106. Cappelletti, G.; Brambilla, L.; Strizzi, S.; et al. iPSC‐derived human cortical organoids display profound alterations of cellular homeostasis following SARS‐CoV‐2 infection and Spike protein exposure. FASEB J. 2025, 39, e70396. doi: 10.1096/fj.202401604RRR
  107. Wang, W.; Yang, J.; Kang, P.; et al. Direct infection of SARS-CoV-2 in human iPSC-derived 3D cardiac organoids recapitulates COVID-19 myocarditis. Virol. Sin. 2023, 38, 971. doi: 10.1016/j.virs.2023.09.005
  108. Tiwari, S.K.; Wang, S.; Smith, D.; et al. Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell-derived lung and cerebral organoids. Stem Cell Rep. 2021, 16, 437–445. doi: 10.1016/j.stemcr.2021.02.005
  109. Mithal, A.; Hume, A.J.; Lindstrom-Vautrin, J.; et al. Human pluripotent stem cell-derived intestinal organoids model SARS-CoV-2 infection revealing a common epithelial inflammatory response. Stem Cell Rep. 2021, 16, 940–953. doi: 10.1016/j.stemcr.2021.02.019
  110. Yamada, S.; Noda, T.; Okabe, K.; et al. SARS-CoV-2 induces barrier damage and inflammatory responses in the human iPSC-derived intestinal epithelium. J. Pharmacol. Sci. 2022, 149, 139–146. doi: 10.1016/j.jphs.2022.04.010
  111. Zhao, Y.; Landau, S.; Okhovatian, S.; et al. Integrating organoids and organ-on-a-chip devices. Nat. Rev. Bioeng. 2024, 2, 588–608. doi: 10.1038/s44222-024-00207-z
  112. Koenig, L.; Ramme, A.P.; Faust, D.; et al. A human stem cell-derived brain-liver chip for assessing blood-brain-barrier permeation of pharmaceutical drugs. Cells 2022, 11, 3295. doi: 10.3390/cells11203295
  113. Novak, R.; Ingram, M.; Marquez, S.; et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 2020, 4, 407–420. doi: 10.1038/s41551-019-0497-x
  114. Leung, C.M.; De Haan, P.; Ronaldson-Bouchard, K.; et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2022, 2, 33. doi: 10.1038/s43586-022-00118-6
  115. Yun, D.H.; Park, Y.-G.; Cho, J.H.; et al. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat. Biotechnol. 2025, 1–12. https://doi.org/10.1038/s41587-024-02533-4.
  116. Zhang, D.; Deng, Y.; Kukanja, P.; et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 2023, 616, 113–122. doi: 10.1038/s41586-023-05795-1
  117. Bai, L.; Wu, Y.; Li, G.; et al. AI-enabled organoids: Construction, analysis, and application. Bioact. Mater. 2024, 31, 525–548. https://doi.org/10.1016/j.bioactmat.2023.09.005.
  118. Cyranoski, D. What’s next for CRISPR babies. Nature 2019, 566, 440–442. doi: 10.1038/d41586-019-00673-1
  119. Cyranoski, D. What CRISPR-baby prison sentences mean for research. Nature 2020, 577, 154–155. doi: 10.1038/d41586-020-00001-y
  120. Nadel, L. The Future of Stem Cell Therapy Regulation under the FDA’s Comprehensive Regenerative Medicine Policy Framework through a Public Health Lens. Hous. J. Health L. Pol’y 2021, 21, 223.
  121. Knoepfler, P.S. From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Adv. Drug Deliv. Rev. 2015, 82, 192–196. doi: 10.1016/j.addr.2014.12.001
  122. Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015, 17, 11–22. doi: 10.1016/j.stem.2015.06.007