Downloads

Xiao, L., Gao, W., Wu, J., Erezuma, I., Dolatshahi-Pirouz, A., Silva-Correia, J., Zhou, Y., Sun, A. R., Prasadam, I., Crawford, R., Oliveira, J. M., Orive, G., Wu, C., & Xiao, Y. Insights into Bioengineering Approaches for Aging Bone Regeneration: Strategies to Target Osteoimmunosenescence. Regenerative Medicine and Dentistry. 2025, 2(1), 1. doi: https://doi.org/10.53941/rmd.2025.100001

Review

Insights into Bioengineering Approaches for Aging Bone Regeneration: Strategies to Target Osteoimmunosenescence

Lan Xiao 1,2,, Wendong Gao 1,2,, Jinfu Wu 3, Itsasne Erezuma 4, Alireza Dolatshahi-Pirouz 5, Joana Silva-Correia 6,7, Yinghong Zhou 2,8, Antonia Rujia Sun 2,9, Indira Prasadam 2,9, Ross Crawford 2,9, Joaquim Miguel Oliveira 6,7, Gorka Orive 5,10,11,12,13, Chengtie Wu 3 and Yin Xiao 1,2,*

1 School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD 4222, Australia

2 The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia

3 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China

4 NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 01006 Vitoria-Gasteiz, Spain

5 Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark

6 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal

7 ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal

8 School of Dentistry, University of Queensland, Brisbane, QLD 4006, Australia

9 School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia

10 Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 
19-01007 Vitoria-Gasteiz, Spain

11 University Institute for Regenerative Medicine and Oral Implantology (UIRMI), UPV/EHU-Fundación Eduardo Anitua, 19-01007 Vitoria-Gasteiz, Spain

12 Bioaraba, NanoBioCel Research Group, 19-01007 Vitoria-Gasteiz, Spain

13 Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore

* Correspondence: yin.xiao@griffith.edu.au

† These authors contributed equally to this work.

Received: 22 October 2024; Revised: 8 January 2025; Accepted: 15 January 2025; Published: 22 January 2025

Abstract: The global accumulation of ageing population is a serious problem causing significant health and social burdens. Especially, aging results in reduced bone regeneration potential and increased risk of morbidities and mortality, which calls the urgent need for advanced therapeutic approaches to improve bone regeneration in the aged patients. The aging associated poor bone regeneration capacity can be attributed to the low-grade, sterile chronic inflammation termed “inflammaging”, which result in detrimental environment for bone healing. The pathogenesis of inflammaging is mainly due to the senescence of immune cells. The senescent immune cells, especially senescent macrophages play a major role in inflammaging via an inflammatory secretome (senescence-associated secretory phenotype/SASP) which is due to ROS accumulation associated mitochondrial dysfunction, energy metabolism change, decline in oxidized nicotinamide adenine dinucleotide (NAD+) level and insufficient autophagy. In addition, the SASP can turn the local young cells into senescent cells, a paracrine senescence effect to facilitate senescent cell accumulation and inflammation, which can also be attributed to the insufficient clearance of senescent cells due to phagocytosis deficiency in senescent immune cells. Therefore, in aging bone environment, the interplay between immune and skeletal cells, termed “osteoimmunosenescence” in this review, not only generates a long-term chronical inflammatory environment to reduce osteogenesis, but also induces senescence in young skeletal progenitor cells to dampen their osteogenic differentiation potential, suggesting osteoimmunosenescence should be considered as a key modulatory target for bone regeneration biomaterials design for the aged patients. In this review, the pathogenesis of inflammaging and the potential impact of osteoimmunosenescence on bone regeneration have been discussed. In addition, to target osteoimmunosenescence, two potential strategies are considered, one is advanced immunomodulation to correct the inflammaging environment, the other is to target immunosenescence, and the current and potential material approaches regarding these two are summarized in this review. Furthermore, it proposes potential strategies to design osteoimmunosenescence-modulating materials by targeting the molecular intersection between senescence and inflammation and by flexibly correct the local environment and environmental responsively induce osteogenesis.

Keywords:

aging immunosenescence inflammaging bone regeneration osteoimmunomodulation biomaterials drug delivery surface property

References

  1. Signer, R.A.; Morrison, S.J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013, 12, 152–165. doi: 10.1016/j.stem.2013.01.001
  2. Hall, B.M.; Balan, V.; Gleiberman, A.S.; et al. p16 (Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 2017, 9, 1867. doi: 10.18632/aging.101268
  3. López-Otín, C.; Blasco, M.A.; Partridge, L.; et al. The hallmarks of aging. Cell 2013, 153, 1194–1217. doi: 10.1016/j.cell.2013.05.039
  4. Gruber, R.; Koch, H.; Doll, B.A.; et al. Fracture healing in the elderly patient. Exp. Gerontol. 2006, 41, 1080–1093. doi: 10.1016/j.exger.2006.09.008
  5. Health, U.D.; Services, H. Bone Health and Osteoporosis: A Report of the Surgeon General; Office of the Surgeon General: Rockville, MD, USA, 2004.
  6. Lorentzon, M.; Johansson, H.; Harvey, N.; et al. Osteoporosis and fractures in women: The burden of disease. Climacteric 2022, 25, 4–10. doi: 10.1080/13697137.2021.1951206
  7. Chang, K.P.; Center, J.R.; Nguyen, T.V.; et al. Incidence of hip and other osteoporotic fractures in elderly men and women: Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Res. 2004, 19, 532–536. doi: 10.1359/JBMR.040109
  8. Roche, J.; Wenn, R.T.; Sahota, O.; et al. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: Prospective observational cohort study. BMJ 2005, 331, 1374. doi: 10.1136/bmj.38643.663843.55
  9. von Friesendorff, M.; McGuigan, F.E.; Wizert, A.; R et al. Hip fracture, mortality risk, and cause of death over two decades. Osteoporos. Int. 2016, 27, 2945–2953. doi: 10.1007/s00198-016-3616-5
  10. Osyczka, A.M.; Damek-Poprawa, M.; Wojtowicz, A.; et al. Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells. Connect. Tissue Res. 2009, 50, 270–277. doi: 10.1080/03008200902846262
  11. Curtis, A.M.; Carroll, R.G. Aging alters rhythms in immunity. Nat. Immunol. 2022, 23, 153–154. doi: 10.1038/s41590-021-01099-6
  12. Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. CellBiol.2014, 15, 482-496. doi: 10.1038/nrm3823
  13. Franceschi, C.; Bonafè, M.; Valensin, S.; et al. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x
  14. Franceschi, C.; Garagnani, P.; Parini, P.; et al. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. doi: 10.1038/s41574-018-0059-4
  15. Álvarez-Rodríguez, L.; López-Hoyos, M.; Muñoz-Cacho, P.; et al. Aging is associated with circulating cytokine dysregulation. Cell. Immunol. 2012, 273, 124–132. doi: 10.1016/j.cellimm.2012.01.001
  16. Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov. 2016, 15, 551–567. doi: 10.1038/nrd.2016.39
  17. Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; et al. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 1–16. doi: 10.1186/s12979-019-0164-9
  18. Prata, L.G.L.; Ovsyannikova, I.G.; Tchkonia, T.; et al. Senescent Cell Clearance by the Immune System: Emerging Therapeutic Opportunities; Elsevier: Amsterdam, The Netherlands, 2018; p. 101275. doi: 10.1016/j.smim.2019.04.003
  19. Oishi, Y.; Manabe, I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis. 2016, 2, 1–8. doi: 10.1038/npjamd.2016.18
  20. De Maeyer, R.P.; Chambers, E.S. The impact of ageing on monocytes and macrophages. Immunol. Lett. 2021, 230, 1–10. doi: 10.1016/j.imlet.2020.12.003
  21. Clark, D.; Brazina, S.; Yang, F.; et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell 2020, 19, e13112. doi: 10.1111/acel.13112
  22. Chen, Z.; Klein, T.; Murray, R.Z.; et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321. doi: 10.1016/j.mattod.2015.11.004
  23. Löffler, J.; Sass, F.A.; Filter, S.; et al. Compromised bone healing in aged rats is associated with impaired M2 macrophage function. Front. Immunol. 2019, 10, 2443. doi: 10.3389/fimmu.2019.02443
  24. Gibon, E.; Lu, L.Y.; Nathan, K.; et al. Inflammation, ageing, and bone regeneration. J. Orthop. Transl. 2017, 10, 28–35. doi: 10.1016/j.jot.2017.04.002
  25. Van Deursen, J.M. The role of senescent cells in ageing. Nature 2014, 509, 439–446. doi: 10.1038/nature13193
  26. Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292. doi: 10.1038/nri2062
  27. Kenkre, J.; Bassett, J. The bone remodelling cycle. Ann. Clin. Biochem. 2018, 55, 308–327. doi: 10.1177/0004563218759371
  28. Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361. doi: 10.1038/nature01661
  29. Xiao, L.; Xiao, Y. The Autophagy in Osteoimmonology: Self-Eating, Maintenance, and Beyond. Front. Endocrinol. 2019, 10, 490. doi: 10.3389/fendo.2019.00490
  30. Atri, C.; Guerfali, F.Z.; Laouini, D. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 2018, 19, 1801. doi: 10.3390/ijms19061801
  31. Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491. doi: 10.3389/fimmu.2014.00491
  32. Sharma, R. Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 2021, 22, 571–587. doi: 10.1007/s10522-021-09936-9
  33. Schliehe, C.; Redaelli, C.; Engelhardt, S.; et al. CD8− dendritic cells and macrophages cross-present poly (D, L-lactate-co-glycolate) acid microsphere-encapsulated antigen in vivo. J. Immunol. 2011, 187, 2112–2121. doi: 10.4049/jimmunol.1002084
  34. Unanue, E.R. Antigen-presenting function of the macrophage. Annu. Rev. Immunol. 1984, 2, 395–428. doi: 10.1146/annurev.iy.02.040184.002143
  35. Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462. doi: 10.1016/j.immuni.2016.02.015
  36. Xiao, L.; Ma, Y.; Crawford, R.; et al. The interplay between hemostasis and immune response in biomaterial development for osteogenesis. Mater. Today 2022, 54, 202–224. doi: 10.1016/j.mattod.2022.02.010
  37. McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. doi: 10.1056/NEJMra1004965
  38. Haringman, J.J.; Gerlag, D.M.; Zwinderman, A.H.; et al. Synovial tissue macrophages: A sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2005, 64, 834–838. doi: 10.1136/ard.2004.029751
  39. Behrens, F.; Himsel, A.; Rehart, S.; et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann. Rheum. Dis. 2007, 66, 1151–1156. doi: 10.1136/ard.2006.068320
  40. Jin, S.; Chen, H.; Li, Y.; et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Ann. Rheum. Dis. 2018, 77, 1644–1652. doi: 10.1136/annrheumdis-2018-213511
  41. Feng, N.; Guo, F. Nanoparticle-siRNA: A potential strategy for rheumatoid arthritis therapy? J. Control. Release 2020, 325, 380–393. doi: 10.1016/j.jconrel.2020.07.006
  42. Rőszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat. Inflamm. 2015, 2015, 816460. doi: 10.1155/2015/816460
  43. Schlundt, C.; El Khassawna, T.; Serra, A.; et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone 2018, 106, 78–89. doi: 10.1016/j.bone.2015.10.019
  44. Cho, T.-J.; Kim, J.; Chung, C.; et al. Expression and role of interleukin-6 in distraction osteogenesis. Calcif. Tissue Int. 2007, 80, 192–200. doi: 10.1007/s00223-006-0240-y
  45. Sammons, J.; Ahmed, N.; El-Sheemy, M.; et al. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: Effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D3. Stem Cells Dev. 2004, 13, 273–280. doi: 10.1089/154732804323099208
  46. Blanchard, F.; Duplomb, L.; Baud’huin, M.; et al. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009, 20, 19–28. doi: 10.1016/j.cytogfr.2008.11.004
  47. Itoh, S.; Udagawa, N.; Takahashi, N.; et al. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone 2006, 39, 505–512. doi: 10.1016/j.bone.2006.02.074
  48. Bellido, T.; Borba, V.Z.; Roberson, P.; et al. Activation of the Janus Kinase/STAT (Signal Transducer and Activator of Transcription) Signal Transduction Pathway by Interleukin-6-Type Cytokines Promotes Osteoblast Differentiation 1. Endocrinology 1997, 138, 3666–3676. doi: 10.1210/en.138.9.3666
  49. Song, H.Y.; Jeon, E.S.; Kim, J.I.; et al. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J. Cell. Biochem. 2007, 101, 1238–1251. doi: 10.1002/jcb.21245
  50. Guihard, P.; Danger, Y.; Brounais, B.; et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 2012, 30, 762–772. doi: 10.1002/stem.1040
  51. Loi, F.; Córdova, L.A.; Zhang, R.; et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res. Ther. 2016, 7, 1–11. doi: 10.1186/s13287-016-0276-5
  52. Wang, S.; Xiao, L.; Prasadam, I.; et al. Inflammatory macrophages interrupt osteocyte maturation and mineralization via regulating the Notch signaling pathway. Mol. Med. 2022, 28, 1–21. doi: 10.1186/s10020-022-00530-4
  53. Santoro, A.; Bientinesi, E.; Monti, D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity? Ageing Res. Rev. 2021, 71, 101422. doi: 10.1016/j.arr.2021.101422
  54. Fülöp, T.; Larbi, A.; Witkowski, J.M. Human inflammaging. Gerontology 2019, 65, 495–504. doi: 10.1159/000497375
  55. Bleve, A.; Motta, F.; Durante, B.; et al. Immunosenescence, inflammaging, and frailty: Role of myeloid cells in age-related diseases. Clin. Rev. Allergy Immunol. 2022, 64, 123–144. doi: 10.1007/s12016-021-08909-7
  56. Baylis, D.; Bartlett, D.B.; Patel, H.P.; et al. Understanding how we age: Insights into inflammaging. Longev. Heal. 2013, 2, 1–8. doi: 10.1186/2046-2395-2-8
  57. Rea, I.M.; Gibson, D.S.; McGilligan, V.; et al. Age and age-related diseases: Role of inflammation triggers and cytokines. Front. Immunol. 2018, 9, 586. doi: 10.3389/fimmu.2018.00586
  58. Biagi, E.; Candela, M.; Fairweather-Tait, S.; et al. Aging of the human metaorganism: The microbial counterpart. Age 2012, 34, 247–267. doi: 10.1007/s11357-011-9217-5
  59. Nakajima, A.; Nakatani, A.; Hasegawa, S.; et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLoS ONE 2017, 12, e0179696. doi: 10.1371/journal.pone.0179696
  60. Onodera, T.; Fukuhara, A.; Shin, J.; et al. Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Sci. Rep. 2017, 7, 4560. doi: 10.1038/s41598-017-04474-2
  61. Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 2012, 53, 2002–2013. doi: 10.1194/jlr.D029546
  62. Xu, X.; Grijalva, A.; Skowronski, A.; et al. Obesity Activates a Program of Lysosomal-Dependent Lipid Metabolism in Adipose Tissue Macrophages Independently of Classic Activation. Cell Metab. 2013, 18, 816–830. doi: 10.1016/j.cmet.2013.11.001
  63. Kurachi, K.; Zhang, K.; Ameri, A.; et al. Genetic and molecular mechanisms of age regulation (homeostasis) of blood coagulation. IUBMB Life 2000, 49, 189–196. doi: 10.1080/713803620
  64. Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; et al. An aged immune system drives senescence and ageing of solid organs. Nature 2021, 594, 100–105.
  65. Minhas, P.S.; Liu, L.; Moon, P.K.; et al. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nat. Immunol. 2019, 20, 50–63. doi: 10.1038/s41590-018-0255-3
  66. Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. doi: 10.1038/s41569-018-0064-2
  67. Sharpless, N.E.; Sherr, C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 2015, 15, 397–408. doi: 10.1038/nrc3960
  68. Rayess, H.; Wang, M.B.; Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 2012, 130, 1715–1725. doi: 10.1002/ijc.27316
  69. Zhou, D.; Borsa, M.; Simon, A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021, 20, e13316. doi: 10.1111/acel.13316
  70. Lee, K.-A.; Robbins, P.D.; Camell, C.D. Intersection of immunometabolism and immunosenescence during aging. Curr. Opin. Pharmacol. 2021, 57, 107–116. doi: 10.1016/j.coph.2021.01.003
  71. Yarbro, J.R.; Emmons, R.S.; Pence, B.D. Macrophage immunometabolism and inflammaging: Roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism 2020, 2, e200026. doi: 10.20900/immunometab20200026
  72. Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012, 24, 981–990. doi: 10.1016/j.cellsig.2012.01.008
  73. Gasek, N.S.; Kuchel, G.A.; Kirkland, J.L.; et al. Strategies for Targeting Senescent Cells in Human Disease. Nat Aging 2021, 1, 870–879. doi: 10.1038/s43587-021-00121-8
  74. Burton, D.G.A.; Stolzing, A. Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res. Rev. 2018, 43, 17–25. doi: 10.1016/j.arr.2018.02.001
  75. He, S.; Sharpless, N.E. Senescence in health and disease. Cell 2017, 169, 1000–1011. doi: 10.1016/j.cell.2017.05.015
  76. Prattichizzo, F.; Bonafè, M.; Olivieri, F.; et al. Senescence associated macrophages and “macroph-aging”: Are they pieces of the same puzzle? Aging 2016, 8, 3159–3160. doi: 10.18632/aging.101133
  77. Shin, E.Y.; Park, J.H.; You, S.T.; et al. Integrin-mediated adhesions in regulation of cellular senescence. Sci. Adv. 2020, 6, 1–12. doi: 10.1126/sciadv.aay3909
  78. Fulop, T.; Larbi, A.; Dupuis, G.; et al. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol. 2018, 8, 1960. doi: 10.3389/fimmu.2017.01960
  79. Krishnamurthty, J.; Torrice, C.; Ramsey, M.R.; et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 2004, 114, 1299–1307. doi: 10.1172/JCI22475
  80. Vicente, R.; Mausset-Bonnefont, A.L.; Jorgensen, C.; et al. Cellular senescence impact on immune cell fate and function. Aging Cell 2016, 15, 400–406. doi: 10.1111/acel.12455
  81. Marshall, J.S.; Warrington, R.; Watson, W.; et al. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49. doi: 10.1186/s13223-018-0278-1
  82. Netea, M.G.; Dominguez-Andres, J.; Barreiro, L.B.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. doi: 10.1038/s41577-020-0285-6
  83. Barbe-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; et al. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. doi: 10.1007/s00281-020-00806-z
  84. Goronzy, J.J.; Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013, 14, 428–436. doi: 10.1038/ni.2588
  85. Geiger, H.; De Haan, G.; Florian, M. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 2013, 13, 376–389. doi: 10.1038/nri3433
  86. Dorshkind, K.; Höfer, T.; Montecino-Rodriguez, E.; et al. Do haematopoietic stem cells age? Nat. Rev. Immunol. 2020, 20, 196–202. doi: 10.1038/s41577-019-0236-2
  87. Beerman, I.; Maloney, W.J.; Weissmann, I.L.; et al. Stem cells and the aging hematopoietic system. Curr. Opin. Immunol. 2010, 22, 500–506. doi: 10.1016/j.coi.2010.06.007
  88. Linehan, E.; Fitzgerald, D.C. Ageing and the immune system: Focus on macrophages. Eur. J. Microbiol. Immunol. 2015, 5, 14–24. doi: 10.1556/EuJMI-D-14-00035
  89. Camell, C.D.; Sander, J.; Spadaro, O.; et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 2017, 550, 119–123. doi: 10.1038/nature24022
  90. Lumeng, C.N.; Liu, J.; Geletka, L.; et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 2011, 187, 6208–6216. doi: 10.4049/jimmunol.1102188
  91. Stout-Delgado, H.W.; Cho, S.J.; Chu, S.G.; et al. Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am. J. Respir. Cell Mol. Biol. 2016, 55, 252–263. doi: 10.1165/rcmb.2015-0222OC
  92. Renshaw, M.; Rockwell, J.; Engleman, C.; et al. Cutting edge: Impaired Toll-like receptor expression and function in aging. J. Immunol. 2002, 169, 4697–4701. doi: 10.4049/jimmunol.169.9.4697
  93. Stranks, A.J.; Hansen, A.L.; Panse, I.; et al. Autophagy controls acquisition of aging features in macrophages. J. Innate. Immun. 2015, 7, 375–391. doi: 10.1159/000370112
  94. Fei, F.; Lee, K.M.; McCarry, B.E.; et al. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide. Sci. Rep. 2016, 6, 22637. doi: 10.1038/srep22637
  95. Acosta, J.C.; Banito, A.; Wuestefeld, T.; et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013, 15, 978–990. doi: 10.1038/ncb2784
  96. Hall, B.M.; Balan, V.; Gleiberman, A.S.; et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 2016, 8, 1294–1315. doi: 10.18632/aging.100991
  97. Farr, J.N.; Fraser, D.G.; Wang, H.; et al. Identification of senescent cells in the bone microenvironment. J. Bone Miner. Res. 2016, 31, 1920–1929. doi: 10.1002/jbmr.2892
  98. Kim, O.H.; Kim, H.; Kang, J.; et al. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice. BMB Rep. 2017, 50, 43–48. doi: 10.5483/BMBRep.2017.50.1.167
  99. Clark, D.; Nakamura, M.; Miclau, T.; et al. Curr. Osteoporos. Rep. 2017, 15, 601–608. doi: 10.1007/s11914-017-0413-9
  100. Josephson, A.M.; Bradaschia-Correa, V.; Lee, S.; et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc. Natl. Acad. Sci. USA 2019, 116, 6995–7004. doi: 10.1073/pnas.1810692116
  101. Huang, R.; Vi, L.; Zong, X.; et al. Maresin 1 resolves aged-associated macrophage inflammation to improve bone regeneration. FASEB J. 2020, 34, 13521–13532. doi: 10.1096/fj.202001145R
  102. Lopez, E.M.; Leclerc, K.; Ramsukh, M.; et al. Modulating the systemic and local adaptive immune response after fracture improves bone regeneration during aging. Bone 2022, 157, 116324. doi: 10.1016/j.bone.2021.116324
  103. Severino, V.; Alessio, N.; Farina, A.; et al. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis. 2013, 4, e911. doi: 10.1038/cddis.2013.445
  104. Lin, H.; Sohn, J.; Shen, H.; et al. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019, 203, 96–110. doi: 10.1016/j.biomaterials.2018.06.026
  105. Kizilay Mancini, Ö.; Lora, M.; Shum-Tim, D.; et al. A proinflammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with atherosclerosis. Stem Cells Transl. Med. 2017, 6, 1132–1140. doi: 10.1002/sctm.16-0221
  106. Dallas, S.L.; Prideaux, M.; Bonewald, L.F. The osteocyte: An endocrine cell… and more. Endocr. Rev. 2013, 34, 658–690. doi: 10.1210/er.2012-1026
  107. Franceschi, C.; Garagnani, P.; Vitale, G.; et al. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 2017, 28, 199–212. doi: 10.1016/j.tem.2016.09.005
  108. Marędziak, M.; Marycz, K.; Tomaszewski, K.A.; et al. The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells Int. 2016, 2016, 2152435. doi: 10.1155/2016/2152435
  109. Ardura, J.A.; Álvarez-Carrión, L.; Gortázar, A.R.; et al. Linking bone cells, aging, and oxidative stress: Osteoblasts, osteoclasts, osteocytes, and bone marrow cells. Aging 2020, 61–71. doi: 10.1016/B978-0-12-818698-5.00006-7
  110. Corrado, A.; Cici, D.; Rotondo, C.; et al. Molecular Basis of Bone Aging. Int. J. Mol. Sci. 2020, 21, 3679. doi: 10.3390/ijms21103679
  111. Espino, J.; Pariente, J.A.; Rodríguez, A.B. Oxidative stress and immunosenescence: Therapeutic effects of melatonin. Oxidative Med. Cell. Longev. 2012, 2012, 670294. doi: 10.1155/2012/670294
  112. Cao, J.J.; Wronski, T.J.; Iwaniec, U.; et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J. Bone Miner. Res. 2005, 20, 1659–1668. doi: 10.1359/JBMR.050503
  113. Cui, Y.; Li, H.; Li, Y.; et al. Novel insights into nanomaterials for immunomodulatory bone regeneration. Nanoscale Adv. 2022, 4, 334–352. doi: 10.1039/D1NA00741F
  114. Lee, J.; Byun, H.; Madhurakkat Perikamana, S.K.; et al. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv. Healthc. Mater. 2019, 8, 1801106. doi: 10.1002/adhm.201801106
  115. Garimella, R.; Eltorai, A.E. Nanotechnology in orthopedics. J. Orthop. 2017, 14, 30–33. doi: 10.1016/j.jor.2016.10.026
  116. Mohammadi, M.; Shaegh, S.A.M.; Alibolandi, M.; et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J. Control. Release 2018, 274, 35–55. doi: 10.1016/j.jconrel.2018.01.032
  117. Malachowski, T.; Hassel, A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Eng. Regen. 2020, 1, 35–50. doi: 10.1016/j.engreg.2020.06.001
  118. Rabiei, M.; Kashanian, S.; Samavati, S.S.; et al. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J. Drug Deliv. Sci. Technol. 2021, 61, 102011. doi: 10.1016/j.jddst.2020.102011
  119. Jin, S.-S.; He, D.-Q.; Luo, D.; et al. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration. ACS Nano 2019, 13, 6581–6595. doi: 10.1021/acsnano.9b00489
  120. Li, M.; Wei, F.; Yin, X.; et al. Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. Mater. Sci. Eng. C 2020, 109, 110508. doi: 10.1016/j.msec.2019.110508
  121. Vantucci, C.E.; Krishan, L.; Cheng, A.; et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater. Sci. 2021, 9, 1668–1682. doi: 10.1039/D0BM01728K
  122. Guo, G.; Gong, T.; Shen, H.; et al. Self-Amplification Immunomodulatory Strategy for Tissue Regeneration in Diabetes Based on Cytokine-ZIFs System. Adv. Funct. Mater. 2021, 31, 2100795. doi: 10.1002/adfm.202100795
  123. Hu, Z.; Ma, C.; Rong, X.; et al. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl. Mater. Interfaces 2018, 10, 2377–2390. doi: 10.1021/acsami.7b18458
  124. Bai, L.; Liu, Y.; Du, Z.; et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018, 76, 344–358. doi: 10.1016/j.actbio.2018.06.023
  125. He, Y.; Yang, X.; Yuan, Z.; et al. Regulation of MSC and macrophage functions in bone healing by peptide LL-37-loaded silk fibroin nanoparticles on a titanium surface. Biomater. Sci. 2019, 7, 5492–5505. doi: 10.1039/C9BM01158G
  126. Feng, X.; Xu, W.; Li, Z.; et al. Immunomodulatory Nanosystems. Adv. Sci. 2019, 6, 1900101. doi: 10.1002/advs.201900101
  127. Li, Y.; Bai, Y.; Pan, J.; et al. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J. Mater. Chem. B 2019, 7, 619–629. doi: 10.1039/C8TB02756K
  128. Elashiry, M.; Elashiry, M.M.; Elsayed, R.; et al. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J. Extracell. Vesicles 2020, 9, 1795362. doi: 10.1080/20013078.2020.1795362
  129. Li, Y.; Cai, B.; Zhang, Z.; et al. Salicylic acid-based nanomedicine with self-immunomodulatory activity facilitates microRNA therapy for metabolic skeletal disorders. Acta Biomater. 2021, 130, 435–446. doi: 10.1016/j.actbio.2021.05.024
  130. Kwon, E.J.; Lo, J.H.; Bhatia, S.N. Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proc. Natl. Acad. Sci. 2015, 112, 14460–14466. doi: 10.1073/pnas.1508522112
  131. Chien, Y.H.; Chan, K.K.; Yap, S.H.K.; et al. NIR-responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: A perspective. J. Chem. Technol. Biotechnol. 2018, 93, 1519–1528. doi: 10.1002/jctb.5581
  132. Yin, C.; Zhao, Q.; Li, W.; et al. Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair. Acta Biomater. 2020, 102, 416–426. doi: 10.1016/j.actbio.2019.11.025
  133. Liu, Y.; Jin, J.; Xu, H.; et al. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomater. 2021, 121, 541–553. doi: 10.1016/j.actbio.2020.11.027
  134. Wang, Y.; Wu, Y.; Long, L.; et al. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment. ACS Appl. Mater. Interfaces 2021, 13, 33584–33599. doi: 10.1021/acsami.1c09889
  135. Kong, Y.; Liu, F.; Ma, B.; et al. Intracellular pH-responsive iron-catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair. Nano Res. 2022, 15, 1153–1161. doi: 10.1007/s12274-021-3618-2
  136. Yang, J.; Zhang, X.; Liu, C.; et al. Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 2021, 118, 100768. doi: 10.1016/j.pmatsci.2020.100768
  137. Sushnitha, M.; Evangelopoulos, M.; Tasciotti, E.; et al. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front. Bioeng. Biotechnol. 2020, 8, 627. doi: 10.3389/fbioe.2020.00627
  138. Zhang, X.; Chen, J.; Jiang, Q.; et al. Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. J. Mater. Chem. B 2020, 8, 8884–8893. doi: 10.1039/D0TB01686A
  139. Zhang, Q.; Dehaini, D.; Zhang, Y.; et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190. doi: 10.1038/s41565-018-0254-4
  140. Li, R.; He, Y.; Zhu, Y.; et al. Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett. 2018, 19, 124–134. doi: 10.1021/acs.nanolett.8b03439
  141. Liu, Y.; Hardie, J.; Zhang, X.; et al. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017, 34, 25–32. doi: 10.1016/j.smim.2017.09.011
  142. Fadeel, B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front. Immunol. 2019, 10, 133. doi: 10.3389/fimmu.2019.00133
  143. Stater, E.P.; Sonay, A.Y.; Hart, C.; et al. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194. doi: 10.1038/s41565-021-01017-9
  144. Feng, R.; Yu, F.; Xu, J.; et al. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2021, 266, 120469. doi: 10.1016/j.biomaterials.2020.120469
  145. Bartneck, M.; Keul, H.A.; Singh, S.; et al. Rapid Uptake of Gold Nanorods by Primary Human Blood Phagocytes and Immunomodulatory Effects of Surface Chemistry. ACS Nano 2010, 4, 3073–3086. doi: 10.1021/nn100262h
  146. Li, B.; Xie, J.; Yuan, Z.; et al. Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles. Angew. Chem. Int. Ed. 2018, 57, 4527–4531. doi: 10.1002/anie.201710068
  147. Ray, P.; Haideri, N.; Haque, I.; et al. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J. Immunol. Sci. 2021, 5, 19–33. doi: 10.29245/2578-3009/2021/1.1206
  148. Oliveira, I.M.; Gonçalves, C.; Oliveira, E.P.; et al. PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Mater. Sci. Eng. C 2021, 121, 111845. doi: 10.1016/j.msec.2020.111845
  149. Oliveira, I.; Carvalho, M.; Fernandes, D.; et al. Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. J. Mater. Chem. B 2021, 9, 4211–4218. doi: 10.1039/D1TB00802A
  150. Patel, K.D.; Kim, T.-H.; Mandakhbayar, N.; et al. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell-and tissue-regulatory responses. Acta Biomater. 2020, 108, 97–110. doi: 10.1016/j.actbio.2020.03.012
  151. Kwon, D.; Cha, B.G.; Cho, Y.; et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017, 17, 2747–2756. doi: 10.1021/acs.nanolett.6b04130
  152. Wang, S.; Yang, L.; Cai, B.; et al. Injectable hybrid inorganic nanoscaffold as rapid stem cell assembly template for cartilage repair. Natl. Sci. Rev. 2022, 9, nwac037. doi: 10.1093/nsr/nwac037
  153. Sarkar, A.; Carvalho, E.; D’souza, A.A.; et al. Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine 2019, 14, 871–887. doi: 10.2217/nnm-2018-0221
  154. Chen, Y.; Guan, M.; Ren, R.; et al. Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy. Int. J. Nanomed. 2020, 15, 2011. doi: 10.2147/IJN.S242919
  155. Bai, L.; Chen, P.; Zhao, Y.; et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials 2021, 278, 121162. doi: 10.1016/j.biomaterials.2021.121162
  156. Huang, Q.; Ouyang, Z.; Tan, Y.; et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomater. 2019, 100, 415–426. doi: 10.1016/j.actbio.2019.09.030
  157. Shah, Y.; Partain, B.; Dobson, J.; et al. Protein corona formation on particles in bovine synovial fluid and in a rat knee model of osteoarthritis. Osteoarthr. Cartil. 2020, 28, S349. doi: 10.1016/j.joca.2020.02.545
  158. Brown, S.; Pistiner, J.; Adjei, I.M.; et al. Nanoparticle properties for delivery to cartilage: The implications of disease state, synovial fluid, and off-target uptake. Mol. Pharm. 2017, 16, 469–479. doi: 10.1021/acs.molpharmaceut.7b00484
  159. Obst, K.; Yealland, G.; Balzus, B.; et al. Protein corona formation on colloidal polymeric nanoparticles and polymeric nanogels: Impact on cellular uptake, toxicity, immunogenicity, and drug release properties. Biomacromolecules 2017, 18, 1762–1771. doi: 10.1021/acs.biomac.7b00158
  160. Li, D.; Li, Y.; Shrestha, A.; et al. Effects of Programmed Local Delivery from a Micro/Nano-Hierarchical Surface on Titanium Implant on Infection Clearance and Osteogenic Induction in an Infected Bone Defect. Adv. Healthc. Mater. 2019, 8, 1900002. doi: 10.1002/adhm.201900002
  161. Shi, M.; Xia, L.; Chen, Z.; et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials 2017, 144, 176–187. doi: 10.1016/j.biomaterials.2017.08.027
  162. Liang, H.; Jin, C.; Ma, L.; et al. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation. ACS Appl. Mater. Interfaces 2019, 11, 41758–41769. doi: 10.1021/acsami.9b16848
  163. Rodrigues, D.B.; Oliveira, J.M.; Santos, T.C.; et al. Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. J. Tissue Eng. Regen. Med. 2018, 12, e1796–e1812. doi: 10.1002/term.2597
  164. Jeevanandam, J.; Sundaramurthy, A.; Sharma, V.; et al. Sustainability of One-Dimensional Nanostructures: Fabrication and Industrial Applications. In Sustainable Nanoscale Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–113. doi: 10.1016/B978-0-12-814681-1.00004-7
  165. Bordoni, V.; Reina, G.; Orecchioni, M.; et al. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale 2019, 11, 19408–19421. doi: 10.1039/C9NR03975A
  166. Chen, W.; Zhang, F.; Ju, Y.; et al. Gold nanomaterial engineering for macrophage-mediated inflammation and tumor treatment. Adv. Healthc. Mater. 2021, 10, 2000818. doi: 10.1002/adhm.202000818
  167. Oh, N.; Kim, Y.; Kweon, H.-S.; et al. Macrophage-mediated exocytosis of elongated nanoparticles improves hepatic excretion and cancer phototherapy. ACS Appl. Mater. Interfaces 2018, 10, 28450–28457. doi: 10.1021/acsami.8b10302
  168. Nambara, K.; Niikura, K.; Mitomo, H.; et al. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir 2016, 32, 12559–12567. doi: 10.1021/acs.langmuir.6b02064
  169. Sumbayev, V.V.; Yasinska, I.M.; Garcia, C.P.; et al. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small 2013, 9, 472–477. doi: 10.1002/smll.201201528
  170. Tsai, C.-Y.; Lu, S.-L.; Hu, C.-W.; et al. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol. 2012, 188, 68–76. doi: 10.4049/jimmunol.1100344
  171. Krpetic, Z.; Porta, F.; Caneva, E.; et al. Phagocytosis of biocompatible gold nanoparticles. Langmuir 2010, 26, 14799–14805. doi: 10.1021/la102758f
  172. Chen, Z.; Ni, S.; Han, S.; et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale 2017, 9, 706–718. doi: 10.1039/C6NR06421C
  173. Xu, C.; Xiao, L.; Cao, Y.; et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323–2331. doi: 10.1007/s12274-020-2783-z
  174. Li, J.; Jiang, X.; Li, H.; et al. Tailoring materials for modulation of macrophage fate. Adv. Mater. 2021, 33, 2004172. doi: 10.1002/adma.202004172
  175. Siqueira, R.; Ferreira, J.A.; Rizzante, F.A.P.; et al. Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis. J. Periodontal Res. 2021, 56, 351–362. doi: 10.1111/jre.12827
  176. Li, X.; Huang, Q.; Elkhooly, T.A.; et al. Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. Biomed. Mater. 2018, 13, 045013. doi: 10.1088/1748-605X/aabe33
  177. Richtering, W.; Alberg, I.; Zentel, R. Nanoparticles in the biological context: Surface morphology and protein corona formation. Small 2020, 16, 2002162. doi: 10.1002/smll.202002162
  178. García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; et al. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 2018, 10, 1256–1264. doi: 10.1039/C7NR08322J
  179. Zia, F.; Kendall, M.; Watson, S.P.; et al. Platelet aggregation induced by polystyrene and platinum nanoparticles is dependent on surface area. RSC Adv. 2018, 8, 37789–37794. doi: 10.1039/C8RA07315E
  180. Moustaoui, H.; Saber, J.; Djeddi, I.; et al. A protein corona study by scattering correlation spectroscopy: A comparative study between spherical and urchin-shaped gold nanoparticles. Nanoscale 2019, 11, 3665–3673. doi: 10.1039/C8NR09891C
  181. Binnemars-Postma, K.A.; Ten Hoopen, H.W.; Storm, G.; et al. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: Protein corona as a critical determinant. Nanomedicine 2016, 11, 2889–2902. doi: 10.2217/nnm-2016-0233
  182. Sadowska, J.M.; Wei, F.; Guo, J.; et al. Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 2018, 181, 318–332. doi: 10.1016/j.biomaterials.2018.07.058
  183. Veiseh, O.; Doloff, J.C.; Ma, M.; et al. Size-and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 2015, 14, 643–651. doi: 10.1038/nmat4290
  184. Yang, C.; Zhao, C.; Wang, X.; et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale 2019, 11, 17699–17708. doi: 10.1039/C9NR05730G
  185. Sj, A.; Ryb, C.; Ccb, C.; et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021, 129, 148–158. doi: 10.1016/j.actbio.2021.05.042
  186. Ni, S.; Zhai, D.; Huan, Z.; et al. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis. Nanoscale 2020, 12, 16474-16488. doi: 10.1039/D0NR03886E
  187. Zheng, X.; Xin, L.; Luo, Y.; et al. Near-Infrared-Triggered Dynamic Surface Topography for Sequential Modulation of Macrophage Phenotypes. ACS Appl. Mater. Interfaces 2019, 11, 43689–43697. doi: 10.1021/acsami.9b14808
  188. Boehler, R.M.; Graham, J.G.; Shea, L.D. Tissue engineering tools for modulation of the immune response. BioTechniques 2011, 51, 239–254. doi: 10.2144/000113754
  189. Wilson, C.J.; Clegg, R.E.; Leavesley, D.I.; et al. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005, 11, 1–18. doi: 10.1089/ten.2005.11.1
  190. Lin, L.; Xie, Y.; Kai, L.; et al. Unveiling the Mechanism of Surface Hydrophilicity-Modulated Macrophage Polarization. Adv. Healthc. Mater. 2018, 7, 1800675. doi: 10.1002/adhm.201800675
  191. Hotchkiss, K.M.; Reddy, G.B.; Hyzy, S.L.; et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016, 31, 425–434. doi: 10.1016/j.actbio.2015.12.003
  192. Chen, L.; Wang, D.; Peng, F.; et al. Nanostructural Surfaces with Different Elastic Moduli Regulate the Immune Response by Stretching Macrophages. Nano Lett. 2019, 19, 3480–3489. doi: 10.1021/acs.nanolett.9b00237
  193. Chen, Z.; Chen, L.; Liu, R.; et al. The osteoimmunomodulatory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration. Biomater. Sci. 2018, 6, 1007–1019. doi: 10.1039/C7BM00869D
  194. Wu, C.; Chen, Z.; Yi, D.; et al. Multidirectional Effects of Sr-, Mg-, and Si-Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis, and Osteogenesis. ACS Appl. Mater. Interfaces 2014, 6, 4264–4276. doi: 10.1021/am4060035
  195. Bai, L.; Du, Z.; Du, J.; et al. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 2018, 162, 154–169. doi: 10.1016/j.biomaterials.2018.02.010
  196. Bezuidenhout, D.; Davies, N.; Zilla, P. Effect of well defined dodecahedral porosity on inflammation and angiogenesis. Asaio J. 2002, 48, 465–471. doi: 10.1097/00002480-200209000-00004
  197. Klinge, U.; Klosterhalfen, B.; Birkenhauer, V.; et al. Impact of Polymer Pore Size on the Interface Scar Formation in a Rat Model. J. Surg. Res. 2002, 103, 208–214. doi: 10.1006/jsre.2002.6358
  198. Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. doi: 10.1016/j.biomaterials.2005.02.002
  199. Junge, K.; Binnebösel, M.; Trotha, K.; et al. Mesh biocompatibility: Effects of cellular inflammation and tissue remodelling. Langenbecks Arch. Surg. 2012, 397, 255–270. doi: 10.1007/s00423-011-0780-0
  200. Laschke, M.W.; Harder, Y.; Amon, M.; et al. Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Eng. 2006, 12, 2093–2104. doi: 10.1089/ten.2006.12.2093
  201. Chung, J.J.; Jin, Y.; Sum, B.; et al. Bone Substitutes: 3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution. Adv. Healthc. Mater. 2021, 10, 2100117. doi: 10.1002/adhm.202100117
  202. Chen, Y.W.; Hsu, T.T.; Wang, K.; et al. Stimulatory effects of the fast setting and suitable degrading Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 3, 7099–7108. doi: 10.1039/C5TB00713E
  203. Wang, C.Y.; Chen, B.; Wang, W.; et al. Strontium released bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative environment for osteochondral regeneration. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109833. doi: 10.1016/j.msec.2019.109833
  204. Yamaguchi, M.; Neale Weitzmann, M. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol. Cell. Biochem. 2012, 359, 399–407. doi: 10.1007/s11010-011-1034-8
  205. Tan, S.; Wang, Y.; Du, Y.; et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioact. Mater. 2021, 6, 3411–3423. doi: 10.1016/j.bioactmat.2021.03.006
  206. Shi, M.; Chen, Z.; Farnaghi, S.; et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater. 2016, 30, 334–344. doi: 10.1016/j.actbio.2015.11.033
  207. Lin, R.C.; Deng, C.J.; Li, X.X.; et al. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics 2019, 9, 6300–6313. doi: 10.7150/thno.36120
  208. Liu, W.; Li, J.; Cheng, M.; et al. Zinc-Modified Sulfonated Polyetheretherketone Surface with Immunomodulatory Function for Guiding Cell Fate and Bone Regeneration. Adv. Sci. 2018, 5, 1800749. doi: 10.1002/advs.201800749
  209. Liu, G.; Wang, X.; Zhou, X.; et al. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: A strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics 2020, 10, 1074. doi: 10.7150/thno.37931
  210. Chen, Z.; Yuen, J.; Crawford, R.; et al. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials 2015, 61, 126–138. doi: 10.1016/j.biomaterials.2015.04.044
  211. Wu, J.; Qin, C.; Ma, J.; et al. An immunomodulatory bioink with hollow manganese silicate nanospheres for angiogenesis. Appl. Mater. Today 2021, 23, 101015. doi: 10.1016/j.apmt.2021.101015
  212. Pan, H.; Xie, Y.; Zhang, Z.; et al. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis. Biomed. Mater. 2017, 12, 045006. doi: 10.1088/1748-605X/aa6b7c
  213. Wang, Q.; Feng, Y.; He, M.; et al. A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. Adv. Funct. Mater. 2021, 31, 2008906. doi: 10.1002/adfm.202008906
  214. Chen, Z.; Bachhuka, A.; Han, S.; et al. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. Acs Nano 2017, 11, 4494–4506. doi: 10.1021/acsnano.6b07808
  215. Ma, W.; Mao, J.; Yang, X.; et al. A single-atom Fe–N 4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2018, 55, 159–162. doi: 10.1039/C8CC08116F
  216. Zhang, Q.; Tao, H.; Lin, Y.; et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016, 105, 206–221. doi: 10.1016/j.biomaterials.2016.08.010
  217. Bao, X.; Zhao, J.; Sun, J.; et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882–8892. doi: 10.1021/acsnano.8b04022
  218. Rymut, N.; Heinz, J.; Sadhu, S.; et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 2020, 34, 597–609. doi: 10.1096/fj.201902126R
  219. Pham, L.M.; Kim, E.-C.; Ou, W.; et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials 2021, 269, 120677. doi: 10.1016/j.biomaterials.2021.120677
  220. Cai, Y.; Zhou, H.; Zhu, Y.; et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020, 30, 574–589. doi: 10.1038/s41422-020-0314-9