
Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
An Overview of Light-Assisted CO2 Cycloaddition for Cyclic Carbonate: Paths of Photo-Induced Thermal-Catalysis, Photocatalysis and Photo-Thermal Synergistic Catalysis
Bin Zhu 1, Qichao Cao 1, Xin Ding 1,*, and Xiaolong Yang 1,2,*
1 School of Chemistry and Chemical Engineering, Qingdao University, 308 NingXia Road, Qingdao 266071, China
2 State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Bio-Based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, China
* Correspondence: dingxin@qdu.edu.cn (X.D.); yangxl@qdu.edu.cn (X.Y.)
Received: 4 November 2024; Revised: 6 January 2024; Accepted: 22 January 2025; Published: 6 February 2026
Abstract: The increase of CO2 concentration significantly results in severe greenhouse effect. Reducing emission and chemically utilizing CO2 are effective means to solve this problem. CO2 cycloaddition reaction with epoxide is atomically economical and environmentally friendly. However, current catalytic systems still have a long way to go for high catalytic efficiency under mild conditions. Solar energy has demonstrated excellent characteristics in direct photothermal utilization, photocatalytic reactions, and photoelectrochemical reactions recently. Therefore, herein this review summarizes the research work on solar energy mediated CO2 cycloaddition reactions in the past decade. Firstly, the heat generated by photothermal effects is confined to the local space and can be more effectively absorbed by reaction molecules for efficient reactions, greatly reducing the energy consumption of traditional thermal reactions. CO2 cycloaddition with carbon-based materials, polyoxometalates (POM), metal organic frameworks (MOFs), covalent organic frameworks (COFs), and ionic liquids (ILs) as catalysts are reviewed and analyzed; Secondly, semiconductor exhibit high activity due to activation of reactants by photogenerated charges and holes. Single atom catalysts, composites, atomic clusters, MOFs, COFs, Porous organic polymers (POPs), and others used in such reaction are reviewed and analyzed; Finally, the solar light mediated photothermal synergistic catalysis and the reaction system of light and external heating synergy are introduced and analyzed. Last but not least, some issues in the development of solar energy mediated CO2 cycloaddition reactions are analyzed and discussed, and future research prospects are proposed on this basis.
Keywords:
heterogenous CO2 cycloaddition photo-induced thermal-catalysis photocatalytic CO2 cycloaddition photothermal synergistic catalysis cyclic carbonateReferences
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C Nature 2009, 458, 1158–1162. doi: 10.1038/nature08017
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. doi: 10.1073/pnas.0907765106
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. doi: 10.1021/acs.chemrev.8b00400
- Li, W.-L.; Shuai, Q.; Yu, J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. Small 2024, 20, 2402783. doi: 10.1002/smll.202402783
- Gu, Y.; Wang, G.; Chen, X.; Xu, X.; Liu, Y.; Yang, J.; Zhang, D. Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties. Small 2024, 20, 2402529. doi: 10.1002/smll.202402529
- Yang, D.; Li, S.; He, S.; Zheng, Y. Can conversion of CO2 into fuels via electrochemical or thermochemical reduction be energy efficient and reduce emissions? Energy Convers. Manag. 2022, 273, 116425. doi: 10.1016/j.enconman.2022.116425
- Jiang, M.; Wang, H.; Zhu, M.; Luo, X.; He, Y.; Wang, M.; Wu, C.; Zhang, L.; Li, X.; Liao, X. Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chem. Soc. Rev. 2024, 53, 5149–5189. doi: 10.1039/D3CS00857F
- Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of the greenhouse gas carbon dioxide to graphene. J. CO2 Util. 2007, 107, 2365–2387. doi: 10.1021/cr068357u
- Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81. doi: 10.1039/B912904A
- Xie, S.; Ma, W.; Wu, X.; Zhang, H.; Zhang, Q.; Wang, Y.; Wang, Y. Photocatalytic and electrocatalytic transformations of C1 molecules involving C-C coupling. Energy Environ. Sci. 2021, 14, 37–89. doi: 10.1039/D0EE01860K
- Meng, Q.-Y.; Wang, S.; Huff, G.S.; König, B. Ligand-controlled regioselective hydrocarboxylation of styrenes with CO2 by combining visible light and nickel catalysis. J. Am. Chem. Soc. 2018, 140, 3198–3201. doi: 10.1021/jacs.7b13448
- Chen, Y.; Li, M.; Li, Z.; Liu, F.; Song, G.; Kawi, S. Efficient syngas production via CO2 reforming and electroreduction reactions through catalyst design. Energ. Convers. Manag. 2022, 265, 115744. doi: 10.1016/j.enconman.2022.115744
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. doi: 10.1039/C3EE42350F
- Shaikh, R.R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2017, 8, 419–450. doi: 10.1021/acscatal.7b03580
- Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO2 and Epoxides to Methanol and Diols. Angew. Chem. Int. Ed. 2012, 51, 13041–13045. doi: 10.1002/anie.201207781
- Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green. Chem. 2003, 5, 497–507. doi: 10.1039/B304963A
- Mishra, V.; Peter, S. A comprehensive overview on catalytic pathway for CO2 utilization with epoxide to cyclic carbonate. Chem. Catal. 2023, 4, 100796. doi: 10.1016/j.checat.2023.100796
- Darensbourg, D.J.; Yarbrough, J.C.; Ortiz, C.; Fang, C.C. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J. Am. Chem. Soc. 2003, 125, 7586–7591. doi: 10.1021/ja034863e
- Darensbourg, D.J.; Yeung, A.D. A concise review of computational studies of the carbon dioxide-epoxide copolymerization reactions. Polym. Chem. 2014, 5, 3949–3962. doi: 10.1039/C4PY00299G
- Rao, R.; Ma, S.; Gao, B.; Bi, F.; Chen, Y.; Yang, Y.; Liu, N.; Wu, M.; Zhang, X.; Science, I. Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds. J. Colloid. Interf. Sci. 2023, 636, 55–72. doi: 10.1016/j.jcis.2022.12.167
- Taddei, M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord. Chem. Rev. 2017, 343, 1–24. doi: 10.1016/j.ccr.2017.04.010
- Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks. ACS Catal. 2019, 9, 10174–10191. doi: 10.1021/acscatal.9b03439
- Lin, X.; Zhang, M.; Lv, W.; Li, J.; Huang, R.; Wang, Y. Engineering Carbon Nanotube‐Based Photoactive COF to Synergistically Arm a Multifunctional Antibacterial Hydrogel. Adv. Funct. Mater. 2024, 34, 2310845. doi: 10.1002/adfm.202310845
- Shan, T.; Luo, H.; Wu, S.; Li, J.; Zhang, F.; Xiao, H.; Huang, L.; Chen, L. In situ formation of a covalent organic framework on g-C3N4 encapsulated with nanocellulosic carbon for enhanced photocatalytic N2-to-NH3 conversion. Fuel. 2024, 358, 130157. doi: 10.1016/j.fuel.2023.130157
- Li, G.; Yue, Q.; Fu, P.; Wang, K.; Zhou, Y.; Wang, J. Ionic dye based covalent organic frameworks for photothermal water evaporation. Adv. Funct. Mater. 2023, 33, 2213810. doi: 10.1002/adfm.202213810
- Ejaz, M.; Mohamed, M.G.; Kuo, S.-W. Solid state chemical transformation provides a fully benzoxazine-linked porous organic polymer displaying enhanced CO2 capture and supercapacitor performance. Polym. Chem. 2023, 14, 2494–2509. doi: 10.1039/D3PY00158J
- Su, X.; Yang, X.-F.; Huang, Y.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2018, 52, 656–664. doi: 10.1021/acs.accounts.8b00478
- Shan, P.; Ye, H.; Qian, B.; Zheng, Y.; Xiao, G. Boosting the catalytic activity of high-order Ruddlesden-Popper perovskite SrEu2Fe2O7-δ air electrode by A-site La doping for CO2 electrolysis in solid oxide electrolysis cells. Fuel 2024, 367, 131507. doi: 10.1016/j.fuel.2024.131507
- Feric, T.G.; Hamilton, S.T.; Ko, B.H.; Lee, G.A.; Verma, S.; Jiao, F.; Park, A.H.A. Highly tunable syngas product ratios enabled by novel nanoscale hybrid electrolytes designed for combined CO2 capture and electrochemical conversion. Adv. Funct. Mater. 2023, 33, 2210017. doi: 10.1002/adfm.202210017
- Hong, Y.H.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Multi-functional photocatalytic systems for solar fuel production. J. Mater. Chem. A 2023, 11, 14614–14629. doi: 10.1039/D3TA02356G
- Ghoussoub, M.; Xia, M.; Duchesne, P.N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142. doi: 10.1039/C8EE02790K
- Moretti, C.; Patil, V.; Falter, C.; Geissbühler, L.; Patt, A.; Steinfeld, A. Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels. Sci. Total Environ. 2023, 901, 166005. doi: 10.1016/j.scitotenv.2023.166005
- Giacoppo, G.; Trocino, S.; Lo Vecchio, C.; Baglio, V.; Díez-García, M.I.; Aricò, A.S.; Barbera, O. Numerical 3D model of a novel photoelectrolysis tandem cell with solid electrolyte for green hydrogen production. Energies. 2023, 16, 1953. doi: 10.3390/en16041953
- Yao, S.; Okumoto, M.; Madokoro, K.; Shimogami, J.; Suzuki, E.; Yashima, T. Plasma conversion of methane and CO2 using a tubular circle-to-plate reactor. J. Chem. Eng. Jpn. 2003, 36, 435–440. doi: 10.1252/jcej.36.435
- Wan, X.; Li, Y.; Chen, Y.; Ma, J.; Liu, Y.-A.; Zhao, E.-D.; Gu, Y.; Zhao, Y.; Cui, Y.; Li, R.; et al. A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability. Nat. Commun. 2024, 15, 1273. doi: 10.1038/s41467-024-45516-4
- Ren, Y.; Fu, Y.; Li, N.; You, C.; Huang, J.; Huang, K.; Sun, Z.; Zhou, J.; Si, Y.; Zhu, Y.; et al. Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency. Nat. Commun. 2024, 15, 4675. doi: 10.1038/s41467-024-49003-8
- Li, X.; Li, L.; Chu, X.; Liu, X.; Chen, G.; Guo, Q.; Zhang, Z.; Wang, M.; Wang, S.; Tahn, A.; et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat. Commun. 2024, 15, 5639. doi: 10.1038/s41467-024-49928-0
- Liu, H.; Chen, B.; Chen, Y.; Zhou, M.; Tian, F.; Li, Y.; Jiang, J.; Zhai, W. Bioinspired self-standing, self‐floating 3d solar evaporators breaking the trade-off between salt cycle and heat localization for continuous seawater desalination. Adv. Mater. 2023, 35, 2301596. doi: 10.1002/adma.202301596
- Yang, B.; Zhang, Z.; Liu, P.; Fu, X.; Wang, J.; Cao, Y.; Tang, R.; Du, X.; Chen, W.; Li, Z. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 2023, 622, 499–506. doi: 10.1038/s41586-023-06509-3
- Zou, H.; Meng, X.; Zhao, X.; Qiu, J. Hofmeister Effect-Enhanced Hydration Chemistry of Hydrogel for High-Efficiency Solar‐Driven Interfacial Desalination. Adv. Mater. 2023, 35, 2207262. doi: 10.1002/adma.202207262
- Wang, J.; Sun, M.; Liu, C.; Ye, Y.; Chen, M.; Zhao, Z.; Zhang, Y.; Wu, X.; Wang, K.; Zhou, Y. Customized Microenvironments Spontaneously Facilitate Coupled Engineering of Real‐Life Large-Scale Clean Water Capture and Pollution Remediation. Adv. Mater. 2023, 35, 2306103. doi: 10.1002/adma.202306103
- Xiang, B.; Gong, J.; Sun, Y.; Li, J. Robust PVA/GO@ MOF membrane with fast photothermal self-cleaning property for oily wastewater purification. J. Hazard. Mater. 2024, 462, 132803. doi: 10.1016/j.jhazmat.2023.132803
- Noureen, L.; Wang, Q.; Ismail, P.M.; Alomar, M.; Arshad, N.; Irshad, M.S.; Xu, Q.; Wang, X. Multifunctional aerogel with antibiofouling properties for efficient solar steam generation and seawater desalination. Nano Today 2024, 54, 102130. doi: 10.1016/j.nantod.2023.102130
- Lv, C.; Bai, X.; Ning, S.; Song, C.; Guan, Q.; Liu, B.; Li, Y.; Ye, J. Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance. ACS Nano 2023, 17, 1725–1738. doi: 10.1021/acsnano.2c09025
- Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.-Y.; Li, G. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221. doi: 10.1021/acsnano.0c02250
- Tang, T.; Wang, Z.; Guan, J. Optimizing the Electrocatalytic Selectivity of Carbon Dioxide Reduction Reaction by Regulating the Electronic Structure of Single-Atom M-N-C Materials. Adv. Funct. Mater. 2022, 32, 2111504. doi: 10.1002/adfm.202111504
- Ban, J.; Wen, X.; Xu, H.; Wang, Z.; Liu, X.; Cao, G.; Shao, G.; Hu, J. Dual Evolution in Defect and Morphology of Single-Atom Dispersed Carbon Based Oxygen Electrocatalyst. Adv. Funct. Mater. 2021, 31, 2010472. doi: 10.1002/adfm.202010472
- Chen, M.; Zhang, H.; Li, H.; Zhao, Z.; Wang, K.; Zhou, Y.; Zhao, X.; Dubal, D.P. CxNy-based materials as gas sensors: Structure, performance, mechanism and perspective. Coord. Chem. Rev. 2024, 503, 215653. doi: 10.1016/j.ccr.2023.215653
- Wang, T.; Chen, F.; Jiang, L.; Li, J.; Chen, K.; Gao, J. Metal-Organic-Framework-Derived Bromine and Nitrogen Dual-Doped Porous Carbon for CO2 Photocycloaddition Reaction. Inorg. Chem. 2024, 63, 4224–4232. doi: 10.1021/acs.inorgchem.3c04308
- Wang, T.; Chen, F.; An, H.; Chen, K.; Gao, J. Metal-organic-framework-derived boron and nitrogen dual-doped hollow mesoporous carbon for photo-thermal catalytic conversion of CO2. J. Solid. State Chem. 2024, 332, 124570. doi: 10.1016/j.jssc.2024.124570
- Liu, Y.; Chen, Y.; Liu, Y.; Chen, Z.; Yang, H.; Yue, Z.; Fang, Q.; Zhi, Y.; Shan, S. Zn and N co-doped porous carbon nanosheets for photothermally-driven CO2 cycloaddition. J. Catal. 2022, 407, 65–76. doi: 10.1016/j.jcat.2022.01.016
- Yang, Z.; Xie, Y.; Feng, Y.; Yao, J. Tea saponin-derived porous carbon bearing rich oxygen-containing groups towards high efficient CO2 fixation. J. Environ. Chem. Eng. 2024, 12, 112310. doi: 10.1016/j.jece.2024.112310
- Rong, W.; Ding, M.; Wang, Y.; Kong, S.; Yao, J. Porous biochar with a tubular structure for photothermal CO2 cycloaddition: One-step doping versus two-step doping. Sep. Purif. Technol. 2025, 353, 128427. doi: 10.1016/j.seppur.2024.128427
- Paliwal, K.S.; Sarkar, D.; Mitra, A.; Mahalingam, V. Chitosan-Derived N-Doped Carbon for Light-Mediated Carbon Dioxide Fixation into Epoxides. ChemPlusChem. 2023, 88, e202300448. doi: 10.1002/cplu.202300448
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. doi: 10.1038/nchem.1095
- Yang, Q.; Yang, C.-C.; Lin, C.-H.; Jiang, H.-L. Metal-Organic-Framework-Derived Hollow N-Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angew. Chem. Int. Ed. 2019, 58, 3511–3515. doi: 10.1002/anie.201813494
- Gong, L.; Sun, J.; Liu, Y.; Yang, G. Photoinduced synergistic catalysis on Zn single-atom-loaded hierarchical porous carbon for highly efficient CO2 cycloaddition conversion. J. Mater. Chem. A 2021, 9, 21689–21694. doi: 10.1039/D1TA06159C
- Yang, Q.; Peng, H.; Zhang, Q.; Qian, X.; Chen, X.; Tang, X.; Dai, S.; Zhao, J.; Jiang, K.; Yang, Q.; et al. Atomically Dispersed High-Density Al-N4 Sites in Porous Carbon for Efficient Photodriven CO2 Cycloaddition. Adv. Mater. 2021, 33, 2103186. doi: 10.1002/adma.202103186
- Dai, W.; Zou, M.; Long, J.; Li, B.; Zhang, S.; Yang, L.; Wang, D.; Mao, P.; Luo, S.; Luo, X. Nanoporous N-doped Carbon/ZnO hybrid derived from zinc aspartate: An acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Appl. Surf. Sci. 2021, 540, 148311. doi: 10.1016/j.apsusc.2020.148311
- Duan, C.; Ding, M.; Feng, Y.; Cao, M.; Yao, J. ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Sep. Purif. Technol. 2022, 285, 120359. doi: 10.1016/j.seppur.2021.120359
- Tang, F.; Wang, L.; Ma, L.; Fang, Y.; Huang, J.; Liu, Y.-N. Protein-Zn(II) networks derived N-doped porous carbon-supported ZnS for photothermally catalytic CO2 conversion. J. CO2 Util. 2021, 45, 101431. doi: 10.1016/j.jcou.2020.101431
- Xu, Y.; Wang, P.; Zhan, X.; Dai, W.; Li, Q.; Zou, J.; Luo, X. Enhancing the Lewis acidity of single atom Tb via introduction of boron to achieve efficient photothermal synergistic CO2 cycloaddition. J. Colloid. Interf. Sci. 2024, 673, 134–142. doi: 10.1016/j.jcis.2024.06.090
- Wang, Q.; Ma, W.; Qian, J.; Li, N.; Zhang, C.; Deng, M.; Du, H. S-scheme towards interfacial charge transfer between POMs and MOFs for efficient visible-light photocatalytic Cr (VI) reduction. Environ. Pollut. 2024, 347, 123707. doi: 10.1016/j.envpol.2024.123707
- Fang, Z.; Deng, Z.; Wan, X.; Li, Z.; Ma, X.; Hussain, S.; Ye, Z.; Peng, X. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition. Appl. Catal. B-Environ. 2021, 296, 120329. doi: 10.1016/j.apcatb.2021.120329
- He, J.; Li, J.; Han, Q.; Si, C.; Niu, G.; Li, M.; Wang, J.; Niu, J. Photoactive Metal-Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Appl. Mater. Inter. 2019, 12, 2199–2206. doi: 10.1021/acsami.9b13538
- Chen, X.; Wei, M.; Yang, A.; Jiang, F.; Li, B.; Kholdeeva, O.A.; Wu, L. Near-Infrared Photothermal Catalysis for Enhanced Conversion of Carbon Dioxide under Mild Conditions. ACS Appl. Mater. Inter. 2022, 14, 5194–5202. doi: 10.1021/acsami.1c18889
- Wang, T.; Zhu, Y.; Wang, W.; Niu, J.; Lu, Z.; He, P. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984. doi: 10.1007/s12274-024-6626-1
- Dutta, S.; Mukherjee, S.; Qazvini, O.T.; Gupta, A.K.; Sharma, S.; Mahato, D.; Babarao, R.; Ghosh, S.K. Three-in-One C2H2-Selectivity-Guided Adsorptive Separation across an Isoreticular Family of Cationic Square-Lattice MOFs. Angew. Chem. Int. Ed. 2022, 61, e202114132. doi: 10.1002/anie.202114132
- Belmabkhout, Y.; Guillerm, V.; Eddaoudi, M. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chem. Eng. J. 2016, 296, 386–397. doi: 10.1016/j.cej.2016.03.124
- Dong, A.; Chen, D.; Li, Q.; Qian, J. Metal-organic frameworks for greenhouse gas applications. Small 2023, 19, 2201550. doi: 10.1002/smll.202201550
- Ma, C.; Urban, J.J. Hydrogen-bonded polyimide/metal-organic framework hybrid membranes for ultrafast separations of multiple gas pairs. Adv. Funct. Mater. 2019, 29, 1903243. doi: 10.1002/adfm.201903243
- Gao, W.-Y.; Chen, Y.; Niu, Y.; Williams, K.; Cash, L.; Perez, P.J.; Wojtas, L.; Cai, J.; Chen, Y.S.; Ma, S. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 2014, 53, 2615–2619. doi: 10.1002/anie.201309778
- Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J.S.; Zou, R.; Zhao, Y. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 2016, 138, 2142–2145. doi: 10.1021/jacs.5b13335
- Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energ. Environ. Sci. 2012, 5, 6465–6473. doi: 10.1039/C1EE02234B
- Shi, Y.; Zhao, J.; Xu, H.; Hou, S.-L.; Zhao, B. Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst. Sci. China Chem. 2021, 64, 1316–1322. doi: 10.1007/s11426-021-1006-9
- Zou, R.; Li, P.-Z.; Zeng, Y.-F.; Liu, J.; Zhao, R.; Duan, H.; Luo, Z.; Wang, J.-G.; Zou, R.; Zhao, Y. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion. Small 2016, 12, 2334–2343. doi: 10.1002/smll.201503741
- Chen, Y.; Li, F.; Liu, L.; Zhou, Y.-H. Implanting multi-functional ionic liquids into MOF nodes for boosting CO2 cycloaddition under solventless and cocatalyst-free conditions. Chem. Eng. J. 2024, 490, 151657. doi: 10.1016/j.cej.2024.151657
- Sharma, N.; Dhankhar, S.S.; Nagaraja, C.M. A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous Mesoporous Mater. 2019, 280, 372–378. doi: 10.1016/j.micromeso.2019.02.026
- Jiang, L.; Wu, D.; Huang, Z.; Chen, F.; Chen, K.; Ibragimov, A.B.; Gao, J. In Situ Pyrolysis of ZIF-67 to Construct CO2N0.67@ZIF-67 for Photocatalytic CO2 Cycloaddition Reaction. Inorg. Chem. 2024, 63, 14761–14769. doi: 10.1021/acs.inorgchem.4c02504
- Wang, Y.; Ding, M.; Rong, W.; Kong, S.; Yao, J. In situ growth of Fe-doped zeolitic imidazolate framework on MXene for boosting photodriven CO2 cycloaddition. Sep. Purif. Technol. 2024, 345, 127399. doi: 10.1016/j.seppur.2024.127399
- Wu, Y.; Gao, L.; Zhou, X.-C.; Yu, X.; Meng, Y.-R.; Zuo, J.-L.; Su, J.; Yuan, S. Designing photothermal catalytic systems in multi-component MOFs for enhanced conversion of carbon dioxide. Chem. Commun. 2024, 60, 9825–9828. doi: 10.1039/D4CC03203A
- Tu, X.; Sun, C.; Hu, Y.; Chen, Y.; Zhu, S.; Qu, J.; Zhu, Z.; Zhang, X.; Zheng, H. Bimetallic Fe/Co photothermal catalyst for fixing CO2 to cyclic carbonates under atmospheric pressure. Catal. Sci. Technol. 2024, 14, 3201–3210. doi: 10.1039/D4CY00242C
- Duan, C.; Xie, Y.; Ding, M.; Feng, Y.; Yao, J. Design of carbonized melamine sponge@MOFs composites bearing diverse acid-base properties for boosting thermal and solar-driven CO2 cycloaddition. J. CO2 Util. 2022, 64, 102158. doi: 10.1016/j.jcou.2022.102158
- Lyu, H.; Li, H.; Hanikel, N.; Wang, K.; Yaghi, O.M. Covalent organic frameworks for carbon dioxide capture from air. J. Am. Chem. Soc. 2022, 144, 12989–12995. doi: 10.1021/jacs.2c05382
- Kurisingal, J.F.; Kim, H.; Choe, J.H.; Hong, C.S. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord. Chem. Rev. 2022, 473, 214835. doi: 10.1016/j.ccr.2022.214835
- Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Acc. Chem. Res. 2022, 55, 2978–2997. doi: 10.1021/acs.accounts.2c00326
- Ding, L.-G.; Yao, B.-J.; Wu, W.-X.; Yu, Z.-G.; Wang, X.-Y.; Kan, J.-L.; Dong, Y.-B. Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO2 Cycloaddition via Visible-Light-Induced Photothermal Conversion. Inorg. Chem. 2021, 60, 12591–12601. doi: 10.1021/acs.inorgchem.1c01975
- Kondrat, S.; Feng, G.; Bresme, F.; Urbakh, M.; Kornyshev, A.A. Theory and simulations of ionic liquids in nanoconfinement. Chem. Rev. 2023, 123, 6668–6715. doi: 10.1021/acs.chemrev.2c00728
- Li, X.; Chen, K.; Guo, R.; Wei, Z. Ionic liquids functionalized MOFs for adsorption. Chem. Rev. 2023, 123, 10432–10467. doi: 10.1021/acs.chemrev.3c00248
- Fang, X.; Yang, L.; Dai, Z.; Cong, D.; Zheng, D.; Yu, T.; Tu, R.; Zhai, S.; Yang, J.; Song, F.; Wu, H.; Deng, W.-Q.; Liu, C. Poly (ionic liquid) s for Photo-Driven CO2 Cycloaddition: Electron Donor–Acceptor Segments Matter. Adv. Sci. 2023, 2206687. doi: 10.1002/advs.202206687
- Liu, Y.; Sun, J.; Huang, H.; Bai, L.; Zhao, X.; Qu, B.; Xiong, L.; Bai, F.; Tang, J.; Jing, L. Improving CO2 photoconversion with ionic liquid and Co single atoms. Nat. Commun. 2023, 14, 1457. doi: 10.1038/s41467-023-36980-5
- Guo, Y.; Chen, W.; Feng, L.; Fan, Y.; Liang, J.; Wang, X.; Zhang, X. Greenery-inspired nanoengineering of bamboo-like hierarchical porous nanotubes with spatially organized bifunctionalities for synergistic photothermal catalytic CO2 fixation. J. Mater. Chem. A. 2022, 10, 12418–12428. doi: 10.1039/D2TA02885A
- Guo, Q.; Xia, S.-G.; Li, X.-B.; Wang, Y.; Liang, F.; Lin, Z.-S.; Tung, C.-H.; Wu, L.-Z. Flower-like cobalt carbide for efficient carbon dioxide conversion. Chem. Commun. 2020, 56, 7849–7852. doi: 10.1039/D0CC01091J
- Fang, Z.; Wang, Y.; Hu, Y.; Yao, B.; Ye, Z.; Peng, X. A CO2-philic ferrocene-based porous organic polymer for solar-driven CO2 conversion from flue gas. J. Mater. Chem. A 2023, 11, 18272–18279. doi: 10.1039/D3TA03622G
- Tailor, N.K.; Singh, S.; Saini, S.K.; Kaivalya; Afroz, M.A.; Kumar, M.; Peter, S.C.; Pant, K.K.; Satapathi, S. Unveiling the Potential of Halide Perovskites for Seasonally Adaptive CO2 Photoreduction under Low Light Conditions. Adv. Funct. Mater. 2024, 34, 2402894. doi: 10.1002/adfm.202402894
- Bi, W.; Hu, Y.; Jiang, H.; Zhang, L.; Li, C. Revealing the sudden alternation in Pt@ h-BN nanoreactors for nearly 100 % CO2-to-CH4 photoreduction. Adv. Funct. Mater. 2021, 31, 2010780. doi: 10.1002/adfm.202010780
- Xu, Y.; Ren, Y.; Zhou, G.; Feng, S.; Yang, Z.; Dai, S.; Lu, Z.; Zhou, T. Amide‐Engineered Metal-Organic Porous Liquids Toward Enhanced CO2 Photoreduction Performance. Adv. Funct. Mater. 2024, 34, 2313695. doi: 10.1002/adfm.202313695
- Dong, M.; Zhou, J.; Zhong, J.; Li, H.T.; Sun, C.-Y.; Han, Y.-D.; Kou, J.-N.; Kang, Z.-H.; Wang, X.-L.; Su, Z.-M. CO2 dominated bifunctional catalytic sites for efficient industrial exhaust conversion. Adv. Funct. Mater. 2022, 32, 2110136. doi: 10.1002/adfm.202110136
- Saini, N.; Malik, A.; Jain, S.L. Light driven chemical fixation and conversion of CO2 into cyclic carbonates using transition metals: A review on recent advancements. Coord. Chem. Rev. 2024, 502, 215636. doi: 10.1016/j.ccr.2023.215636
- Tan, C.-L.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Isolated Single-Atom Cobalt in the ZnIn2S4 Monolayer with Exposed Zn Sites for CO2 Photofixation. ACS Catal. 2023, 13, 8317–8329. doi: 10.1021/acscatal.3c00992
- Prajapati, P.K.; Kumar, A.; Jain, S.L. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 and Epoxides Using CoPc/TiO2 Hybrid under Mild Conditions. ACS Sustain. Chem. Eng. 2018, 6, 7799–7809. doi: 10.1021/acssuschemeng.8b00755
- Bakiro, M.; Hussein Ahmed, S.; Alzamly, A. Efficient Visible-Light Photocatalytic Cycloaddition of CO2 and Propylene Oxide Using Reduced Graphene Oxide Supported BiNbO4. ACS Sustain. Chem. Eng. 2020, 8, 12072–12079. doi: 10.1021/acssuschemeng.0c03363
- Gong, X.; Zhang, Y.; Xu, Y.; Zhai, G.; Liu, X.; Bao, X.; Wang, Z.; Liu, Y.; Wang, P.; Cheng, H.; et al. Synergistic Effect between CO2 Chemisorption Using Amino-Modified Carbon Nitride and Epoxide Activation by High-Energy Electrons for Plasmon-Assisted Synthesis of Cyclic Carbonates. ACS Appl. Mater. Interfaces 2022, 14, 51029–51040. doi: 10.1021/acsami.2c16382
- Kumar, A.; Samanta, S.; Srivastava, R. Graphitic Carbon Nitride Modified with Zr-Thiamine Complex for Efficient Photocatalytic CO2 Insertion to Epoxide: Comparison with Traditional Thermal Catalysis. ACS Appl. Nano Mater. 2021, 4, 6805–6820. doi: 10.1021/acsanm.1c00887
- Cheng, R.; Wang, A.; Sang, S.; Liang, H.; Liu, S.; Tsiakaras, P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: An economic and ecofriendly choice. Chem. Eng. J. 2023, 466, 142982. doi: 10.1016/j.cej.2023.142982
- Jiang, H.; Zang, C.; Guo, L.; Gao, X. Carbon vacancies enriched carbon nitride nanotubes for Pd coordination environment optimization: Highly efficient photocatalytic hydrodechlorination and CO2 cycloaddition. Sci. Total Environ. 2022, 838, 155920. doi: 10.1016/j.scitotenv.2022.155920
- Elgohary, E.A.; Mohamed, Y.M.A.; Rabie, S.T.; Salih, S.A.; Fekry, A.M.; El Nazer, H.A. Highly selective visible-light-triggered CO2 fixation to cyclic carbonates under mild conditions using TiO2/multiwall carbon nanotubes (MWCNT) grafted with Pt or Pd nanoparticles. New J. Chem. 2021, 45, 17301–17312. doi: 10.1039/D1NJ03123F
- Alzard, R.H.; Siddig, L.A.; Abdelhamid, A.S.; Ramachandran, T.; Alzamly, A. Structural analysis and photocatalytic activities of bismuth-lanthanide oxide perovskites. J. Solid. State Chem. 2024, 329, 124359. doi: 10.1016/j.jssc.2023.124359
- Khalid, A.; Razzaq, Z.; Ahmad, P.; Al-Anzi, B.S.; Rehman, F.; Muhammad, S.; Khandaker, M.U.; Albasher, G.; Alsultan, N.; Liaqat, I.; et al. Visible-light promoted chemical fixation of carbon dioxide with epoxide into cyclic carbonates over S-scheme CdS-CeO2 photocatalyst. Mater. Sci. Semicond. Process. 2023, 165, 107649. doi: 10.1016/j.mssp.2023.107649
- Li, G.; Sui, X.; Cai, X.; Hu, W.; Liu, X.; Chen, M.; Zhu, Y. Precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2. Angew. Chem. Int. Ed. 2021, 133, 10667–10670. doi: 10.1002/ange.202100071
- Wong, K.T.; Brigljević, B.; Lee, J.H.; Yoon, S.Y.; Jang, S.B.; Choong, C.E.; Nah, I.; Kim, H.; Roh, H.-S.; Kwak, S.K. Highly Exposed NH2 Edge on Fragmented g-C3N4 Framework with Integrated Molybdenum Atoms for Catalytic CO2 Cycloaddition: DFT and Techno‐Economic Assessment. Small 2023, 19, 2204336. doi: 10.1002/smll.202204336
- Liu, C.; Niu, H.; Wang, D.; Gao, C.; Said, A.; Liu, Y.; Wang, G.; Tung, C.-H.; Wang, Y. S-Scheme Bi-oxide/Ti-oxide Molecular Hybrid for Photocatalytic Cycloaddition of Carbon Dioxide to Epoxides. ACS Catal. 2022, 12, 8202–8213. doi: 10.1021/acscatal.2c02256
- Wang, D.; Said, A.; Liu, Y.; Niu, H.; Liu, C.; Wang, G.; Li, Z.; Tung, C.-H.; Wang, Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg. Chem. 2022, 61, 14887–14898. doi: 10.1021/acs.inorgchem.2c02605
- Said, A.; Zhang, G.; Wang, D.; Chen, G.; Liu, Y.; Gao, F.; Tung, C.-H.; Wang, Y. Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorg. Chem. 2023, 62, 13476–13484. doi: 10.1021/acs.inorgchem.3c01842
- Bakiro, M.; Ahmed, S.H.; Alzamly, A. Cycloaddition of CO2 to propylene oxide using BiNbO4/NH2-MIL-125(Ti) composites as visible-light photocatalysts. J. Environ. Chem. Eng. 2020, 8, 104461. doi: 10.1016/j.jece.2020.104461
- Hussein Ahmed, S.; Bakiro, M.; Alzamly, A. Photocatalytic Activities of FeNbO4/NH2-MIL-125(Ti) Composites toward the Cycloaddition of CO2 to Propylene Oxide. Molecules 2021, 26, 1693. doi: 10.3390/molecules26061693
- Erzina, M.; Guselnikova, O.; Elashnikov, R.; Trelin, A.; Zabelin, D.; Postnikov, P.; Siegel, J.; Zabelina, A.; Ulbrich, P.; Kolska, Z.; et al. BioMOF coupled with plasmonic CuNPs for sustainable CO2 fixation in cyclic carbonates at ambient conditions. J. CO2 Util. 2023, 69, 102416. doi: 10.1016/j.jcou.2023.102416
- Hu, Y.; Abazari, R.; Sanati, S.; Nadafan, M.; Carpenter-Warren, C.L.; Slawin, A.M.Z.; Zhou, Y.; Kirillov, A.M. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO2 Fixation. ACS Appl. Mater. Interfaces 2023, 15, 37300–37311. doi: 10.1021/acsami.3c04506
- Payra, S.; Roy, S. From Trash to Treasure: Probing Cycloaddition and Photocatalytic Reduction of CO2 over Cerium-Based Metal-Organic Frameworks. J. Phys. Chem. C 2021, 125, 8497–8507. doi: 10.1021/acs.jpcc.1c00662
- He, Y.; Xu, M.; Xia, J.; Zhang, C.; Song, X.; Zhao, X.; Fu, M.; Li, S.; Liu, X. Effect of exposed active sites of semi-amorphous Fe-BTC on photocatalytic CO2 cycloaddition reaction under ambient conditions. Mol. Catal. 2023, 542, 113134. doi: 10.1016/j.mcat.2023.113134
- Zhang, H.; Si, S.; Zhai, G.; Li, Y.; Liu, Y.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; et al. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Appl. Catal. B-Environ. 2023, 337, 122909. doi: 10.1016/j.apcatb.2023.122909
- Shi, Q.; Chen, M.-H.; Xiong, J.; Li, T.; Feng, Y.-Q.; Zhang, B. Porphyrin-Based Two-Dimensional Metal-Organic framework nanosheets for efficient photocatalytic CO2 transformation. Chem. Eng. J. 2024, 481, 148301. doi: 10.1016/j.cej.2023.148301
- Siddig, L.A.; Alzard, R.H.; Nguyen, H.L.; Göb, C.R.; Alnaqbi, M.A.; Alzamly, A. Hexagonal Layer Manganese Metal-Organic Framework for Photocatalytic CO2 Cycloaddition Reaction. ACS Omega 2022, 7, 9958–9963. doi: 10.1021/acsomega.2c00663
- Carrasco, S.; Orcajo, G.; Martínez, F.; Imaz, I.; Kavak, S.; Arenas-Esteban, D.; Maspoch, D.; Bals, S.; Calleja, G.; Horcajada, P. Hf/porphyrin-based metal-organic framework PCN-224 for CO2 cycloaddition with epoxides. Mater. Today Adv. 2023, 19, 100390. doi: 10.1016/j.mtadv.2023.100390
- Liang, J.; Jiang, X.; Zhang, X.; Yu, H.; Shi, J.; Wang, M. Co-porphyrin-based metal-organic framework for light-driven efficient green conversion of CO2 and epoxides. Chem. Eng. J. 2024, 499, 156428. doi: 10.1016/j.cej.2024.156428
- Zhai, G.; Liu, Y.; Mao, Y.; Zhang, H.; Lin, L.; Li, Y.; Wang, Z.; Cheng, H.; Wang, P.; Zheng, Z.; et al. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Appl. Catal. B-Environ. 2022, 301, 120793. doi: 10.1016/j.apcatb.2021.120793
- Zhai, G.; Liu, Y.; Lei, L.; Wang, J.; Wang, Z.; Zheng, Z.; Wang, P.; Cheng, H.; Dai, Y.; Huang, B. Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal-Organic Framework. ACS Catal. 2021, 11, 1988–1994. doi: 10.1021/acscatal.0c05145
- Li, Y.; Zhai, G.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides. Chem. Eng. J. 2022, 437, 135363. doi: 10.1016/j.cej.2022.135363
- Li, L.; Liu, W.; Shi, T.; Shang, S.; Zhang, X.; Wang, H.; Tian, Z.; Chen, L.; Xie, Y. Photoexcited Single-Electron Transfer for Efficient Green Synthesis of Cyclic Carbonate from CO2. ACS Mater. Lett. 2023, 5, 1219–1226. doi: 10.1021/acsmaterialslett.3c00069
- Huang, Z.-W.; Hu, K.-Q.; Mei, L.; Wang, C.-Z.; Chen, Y.-M.; Wu, W.-S.; Chai, Z.-F.; Shi, W.-Q. Potassium Ions Induced Framework Interpenetration for Enhancing the Stability of Uranium-Based Porphyrin MOF with Visible-Light-Driven Photocatalytic Activity. Inorg. Chem. 2020, 60, 651–659. doi: 10.1021/acs.inorgchem.0c02473
- Fan, S.-C.; Chen, S.-Q.; Wang, J.-W.; Li, Y.-P.; Zhang, P.; Wang, Y.; Yuan, W.; Zhai, Q.-G. Precise Introduction of Single Vanadium Site into Indium-Organic Framework for CO2 Capture and Photocatalytic Fixation. Inorg. Chem. 2022, 61, 14131–14139. doi: 10.1021/acs.inorgchem.2c02250
- Liu, L.; Zhang, J.; Cheng, X.; Xu, M.; Kang, X.; Wan, Q.; Han, B.; Wu, N.; Zheng, L.; Ma, C. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Res. 2022, 16, 181–188. doi: 10.1007/s12274-022-4664-0
- Xie, X.; Li, H.; Cao, W.; Ke, D.; Dong, Z.; Tian, L.; Xiong, X.; Zhang, J. A bifunctional catalyst derived from copper metal-organic framework for highly selective photocatalytic CO2 reduction and CO2 cycloaddition reaction. J. Mol. Struct. 2024, 1312, 138556. doi: 10.1016/j.molstruc.2024.138556
- Sun, W.; Zhu, J.; Zhang, M.; Meng, X.; Chen, M.; Feng, Y.; Chen, X.; Ding, Y. Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. Chin. J. Catal. 2022, 43, 2273–2300. doi: 10.1016/S1872-2067(21)63939-6
- Xu, M.L.; Lu, M.; Qin, G.-Y.; Wu, X.-M.; Yu, T.; Zhang, L.-N.; Li, K.; Cheng, X.; Lan, Y.-Q. Piezo-photocatalytic synergy in BiFeO3@ COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem. Int. Ed. 2022, 134, e202210700. doi: 10.1002/ange.202210700
- Li, X.; Niu, X.; Fu, P.; Song, Y.; Zhang, E.; Dang, Y.; Yan, J.; Feng, G.; Lei, S.; Hu, W. Macrocycle-on-COF photocatalyst constructed by in-situ linker exchange for efficient photocatalytic CO2 cycloaddition. Appl. Catal. B-Environ. 2024, 350, 123943. doi: 10.1016/j.apcatb.2024.123943
- Xiong, J.; Chen, M.-H.; Li, X.-Y.; Shi, Q.; Xu, Y.-H.; Feng, Y.-Q.; Zhang, B. Metalloporphyrin-based covalent triazine frameworks for efficient photocatalytic CO2 cycloaddition at ambient conditions. Dyes Pigm. 2025, 233, 112531. doi: 10.1016/j.dyepig.2024.112531
- Qiu, L.-Q.; Li, H.-R.; He, L.-N. Incorporating catalytic units into nanomaterials: Rational design of multipurpose catalysts for CO2 valorization. Acc. Chem. Res. 2023, 56, 2225–2240. doi: 10.1021/acs.accounts.3c00316
- Giri, A.; Patra, A. Porous organic polymers: Promising testbed for heterogeneous reactive oxygen species mediated photocatalysis and nonredox CO2 fixation. Chem. Rec. 2022, 22, e202200071. doi: 10.1002/tcr.202200071
- Bao, Y.; Liu, J.; Zhang, Y.; Zheng, L.; Ma, J.; Zhang, F.; Xiong, Y.; Meng, X.; Dai, Z.; Xiao, F.-S. Porous organic polymers with diverse quaternary phosphonium units for chemical fixation of CO2 with low concentration. Fuel 2023, 331, 125909. doi: 10.1016/j.fuel.2022.125909
- Sarkar, C.; Paul, R.; Dao, D.Q.; Xu, S.; Chatterjee, R.; Shit, S.C.; Bhaumik, A.; Mondal, J. Unlocking Molecular Secrets in a Monomer-Assembly-Promoted Zn-Metalated Catalytic Porous Organic Polymer for Light-Responsive CO2 Insertion. ACS Appl. Mater. Interfaces 2022, 14, 37620–37636. doi: 10.1021/acsami.2c06982
- Cui, C.; Sa, R.; Hong, Z.; Zhong, H.; Wang, R. Ionic-liquid-modified click-based porous organic polymers for controlling capture and catalytic conversion of CO2. ChemSusChem 2020, 13, 180–187. doi: 10.1002/cssc.201902715
- Jingyi, Y.; Siqi, S.; Huaitao, P.; Qihao, Y.; Liang, C. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition. Chem. J. Chin. U 2022, 43.
- Wang, Y.; Liu, H.; Shi, Q.; Miao, Z.; Duan, H.; Wang, Y.; Rong, H.; Zhang, J. Single-Atom Titanium on Mesoporous Nitrogen, Oxygen-Doped Carbon for Efficient Photo-thermal Catalytic CO2 Cycloaddition by a Radical Mechanism. Angew. Chem. Int. Ed. 2024, 63, e202404911. doi: 10.1002/anie.202404911
- Zhang, H.; Zhai, G.; Lei, L.; Zhang, C.; Liu, Y.; Wang, Z.; Cheng, H.; Zheng, Z.; Wang, P.; Dai, Y.; et al. Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. J. Colloid. Interf. Sci. 2022, 625, 33–40. doi: 10.1016/j.jcis.2022.05.146
- Zhou, X.; Zhang, H.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Xing, D.; Liu, Y.; Huang, B. Enhanced cycloaddition between CO2 and epoxide over a bismuth-based metal organic framework due to a synergistic photocatalytic and photothermal effect. J. Colloid. Interf. Sci. 2024, 658, 805–814. doi: 10.1016/j.jcis.2023.12.112
- Jiang, B.; Zhang, C.; Yang, N.; Zhou, Q.; Zhang, L.; Li, J.; Yang, W.; Yang, X.; Zhang, L. 2D/2D ZIF-L-Derived Znδ+ (0 ≤ δ ≤ 2) and N Codoped Carbon Skeleton@ZnIn2S4 S-Scheme Heterojunction for Solar-Driven CO2 Cycloaddition. ACS Sustain. Chem. Eng. 2024, 12, 6584–6595. doi: 10.1021/acssuschemeng.3c08407
- Lu, W.; Shi, X.; Zhou, H.; Luo, W.; Wang, L.; He, H. Tailoring and properties of a novel solar energy-triggered regenerative bionic fiber adsorbent for CO2 capture. Chem. Eng. J. 2022, 449, 137885. doi: 10.1016/j.cej.2022.137885
- Tang, Z.; Zhu, F.; Zhou, J.; Chen, W.; Wang, K.; Liu, M.; Wang, N.; Li, N. Monolithic NF@ ZnO/Au@ ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4. Appl. Catal. B-Environ. 2022, 309, 121267. doi: 10.1016/j.apcatb.2022.121267
- Li, D.; Sun, J.; Ma, R.; Wei, J. High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in-situ photoreduced Pt-CuOx catalyst. J. Energy Chem. 2022, 71, 460–469. doi: 10.1016/j.jechem.2022.04.020
- Xu, Y.; Liu, M.; Tong, F.; Ma, F.; He, X.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y. Strain-assisted in-situ formed oxygen defective WO3 film for photothermal-synergistic reverse water gas shift reaction and single-particle study. Chem. Eng. J. 2022, 433, 134199. doi: 10.1016/j.cej.2021.134199
- Wu, Y.; Yu, X.-F.; Du, Y.; Xia, L.; Guo, Q.; Zhang, K.; Zhang, W.; Liu, S.; Peng, Y.; Li, Z.; et al. A combination of two swords thermo-bluelight-synergistic-catalytic CO2 cycloaddition on ZnIn2S4 exposed abundant of Zinc cation sites. Appl. Catal. B-Environ. 2023, 331, 122732. doi: 10.1016/j.apcatb.2023.122732
- Zhang, W.; Li, Z.; Yu, X.-F.; Zhang, K.; Liu, S.; Du, Y.; Guo, Q.; Zhang, L.; Ding, X.; Tang, H.; et al. Photothermal Synergistic Catalysis over Defective Zn3In2S6 for CO2 Fixation. Inorg. Chem. 2024, 63, 2954–2966. doi: 10.1021/acs.inorgchem.3c03520
- Tu, X.; Sun, Q.; Zhu, S.; Sun, C.; Hu, Y.; Qu, J.; Zhu, Z.; Duan, X.; Zhang, X.; Zheng, H. Nanoflower Fe-base complex for efficient CO2 fixation under atmospheric pressure. J. Environ. Chem. Eng. 2024, 12, 112544. doi: 10.1016/j.jece.2024.112544
- Zhang, L.; Tu, X.; Chen, Y.; Zhu, S.; Sun, C.; Song, Y.; Zheng, H. Synthesis of cyclic carbonates by photothermal catalytic coupling of CO2 and epoxides under solvent-free conditions. Appl. Catal. A-Gen. 2023, 666, 119435. doi: 10.1016/j.apcata.2023.119435
- Zhang, L.; Tu, X.; Chen, Y.; Han, W.; Chen, L.; Sun, C.; Zhu, S.; Song, Y.; Zheng, H. Photothermal catalysis without solvent for fixing CO2 to cyclic carbonate. Mol. Catal. 2023, 538, 112971. doi: 10.1016/j.mcat.2023.112971