Downloads

Zhu, B., Cao, Q., Ding, X., & Yanng, X. An Overview of Light-Assisted CO2 Cycloaddition for Cyclic Carbonate: Paths of Photo-Induced Thermal-Catalysis, Photocatalysis and Photo-Thermal Synergistic Catalysis. Science for Energy and Environment. 2025, 2(1), 1. doi: https://doi.org/10.53941/see.2025.100001

Review

An Overview of Light-Assisted CO2 Cycloaddition for Cyclic Carbonate: Paths of Photo-Induced Thermal-Catalysis, Photocatalysis and Photo-Thermal Synergistic Catalysis

Bin Zhu 1, Qichao Cao 1, Xin Ding 1,*, and Xiaolong Yang 1,2,*

1 School of Chemistry and Chemical Engineering, Qingdao University, 308 NingXia Road, Qingdao 266071, China

2 State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Bio-Based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, China

* Correspondence: dingxin@qdu.edu.cn (X.D.); yangxl@qdu.edu.cn (X.Y.)

Received: 4 November 2024; Revised: 6 January 2024; Accepted: 22 January 2025; Published: 6 February 2026

Abstract: The increase of CO2 concentration significantly results in severe greenhouse effect. Reducing emission and chemically utilizing CO2 are effective means to solve this problem. CO2 cycloaddition reaction with epoxide is atomically economical and environmentally friendly. However, current catalytic systems still have a long way to go for high catalytic efficiency under mild conditions. Solar energy has demonstrated excellent characteristics in direct photothermal utilization, photocatalytic reactions, and photoelectrochemical reactions recently. Therefore, herein this review summarizes the research work on solar energy mediated CO2 cycloaddition reactions in the past decade. Firstly, the heat generated by photothermal effects is confined to the local space and can be more effectively absorbed by reaction molecules for efficient reactions, greatly reducing the energy consumption of traditional thermal reactions. CO2 cycloaddition with carbon-based materials, polyoxometalates (POM), metal organic frameworks (MOFs), covalent organic frameworks (COFs), and ionic liquids (ILs) as catalysts are reviewed and analyzed; Secondly, semiconductor exhibit high activity due to activation of reactants by photogenerated charges and holes. Single atom catalysts, composites, atomic clusters, MOFs, COFs, Porous organic polymers (POPs), and others used in such reaction are reviewed and analyzed; Finally, the solar light mediated photothermal synergistic catalysis and the reaction system of light and external heating synergy are introduced and analyzed. Last but not least, some issues in the development of solar energy mediated CO2 cycloaddition reactions are analyzed and discussed, and future research prospects are proposed on this basis.

Keywords:

heterogenous CO2 cycloaddition photo-induced thermal-catalysis photocatalytic CO2 cycloaddition photothermal synergistic catalysis cyclic carbonate

References

  1. Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C Nature 2009, 458, 1158–1162. doi: 10.1038/nature08017
  2. Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. doi: 10.1073/pnas.0907765106
  3. Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. doi: 10.1021/acs.chemrev.8b00400
  4. Li, W.-L.; Shuai, Q.; Yu, J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. Small 2024, 20, 2402783. doi: 10.1002/smll.202402783
  5. Gu, Y.; Wang, G.; Chen, X.; Xu, X.; Liu, Y.; Yang, J.; Zhang, D. Unlocking the Potential of CO2 Capture: A Synergistic Hybridization Strategy for Polymeric Hydrogels with Tunable Physicochemical Properties. Small 2024, 20, 2402529. doi: 10.1002/smll.202402529
  6. Yang, D.; Li, S.; He, S.; Zheng, Y. Can conversion of CO2 into fuels via electrochemical or thermochemical reduction be energy efficient and reduce emissions? Energy Convers. Manag. 2022, 273, 116425. doi: 10.1016/j.enconman.2022.116425
  7. Jiang, M.; Wang, H.; Zhu, M.; Luo, X.; He, Y.; Wang, M.; Wu, C.; Zhang, L.; Li, X.; Liao, X. Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chem. Soc. Rev. 2024, 53, 5149–5189. doi: 10.1039/D3CS00857F
  8. Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of the greenhouse gas carbon dioxide to graphene. J. CO2 Util. 2007, 107, 2365–2387. doi: 10.1021/cr068357u
  9. Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81. doi: 10.1039/B912904A
  10. Xie, S.; Ma, W.; Wu, X.; Zhang, H.; Zhang, Q.; Wang, Y.; Wang, Y. Photocatalytic and electrocatalytic transformations of C1 molecules involving C-C coupling. Energy Environ. Sci. 2021, 14, 37–89. doi: 10.1039/D0EE01860K
  11. Meng, Q.-Y.; Wang, S.; Huff, G.S.; König, B. Ligand-controlled regioselective hydrocarboxylation of styrenes with CO2 by combining visible light and nickel catalysis. J. Am. Chem. Soc. 2018, 140, 3198–3201. doi: 10.1021/jacs.7b13448
  12. Chen, Y.; Li, M.; Li, Z.; Liu, F.; Song, G.; Kawi, S. Efficient syngas production via CO2 reforming and electroreduction reactions through catalyst design. Energ. Convers. Manag. 2022, 265, 115744. doi: 10.1016/j.enconman.2022.115744
  13. Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. doi: 10.1039/C3EE42350F
  14. Shaikh, R.R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2017, 8, 419–450. doi: 10.1021/acscatal.7b03580
  15. Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO2 and Epoxides to Methanol and Diols. Angew. Chem. Int. Ed. 2012, 51, 13041–13045. doi: 10.1002/anie.201207781
  16. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green. Chem. 2003, 5, 497–507. doi: 10.1039/B304963A
  17. Mishra, V.; Peter, S. A comprehensive overview on catalytic pathway for CO2 utilization with epoxide to cyclic carbonate. Chem. Catal. 2023, 4, 100796. doi: 10.1016/j.checat.2023.100796
  18. Darensbourg, D.J.; Yarbrough, J.C.; Ortiz, C.; Fang, C.C. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J. Am. Chem. Soc. 2003, 125, 7586–7591. doi: 10.1021/ja034863e
  19. Darensbourg, D.J.; Yeung, A.D. A concise review of computational studies of the carbon dioxide-epoxide copolymerization reactions. Polym. Chem. 2014, 5, 3949–3962. doi: 10.1039/C4PY00299G
  20. Rao, R.; Ma, S.; Gao, B.; Bi, F.; Chen, Y.; Yang, Y.; Liu, N.; Wu, M.; Zhang, X.; Science, I. Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds. J. Colloid. Interf. Sci. 2023, 636, 55–72. doi: 10.1016/j.jcis.2022.12.167
  21. Taddei, M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord. Chem. Rev. 2017, 343, 1–24. doi: 10.1016/j.ccr.2017.04.010
  22. Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks. ACS Catal. 2019, 9, 10174–10191. doi: 10.1021/acscatal.9b03439
  23. Lin, X.; Zhang, M.; Lv, W.; Li, J.; Huang, R.; Wang, Y. Engineering Carbon Nanotube‐Based Photoactive COF to Synergistically Arm a Multifunctional Antibacterial Hydrogel. Adv. Funct. Mater. 2024, 34, 2310845. doi: 10.1002/adfm.202310845
  24. Shan, T.; Luo, H.; Wu, S.; Li, J.; Zhang, F.; Xiao, H.; Huang, L.; Chen, L. In situ formation of a covalent organic framework on g-C3N4 encapsulated with nanocellulosic carbon for enhanced photocatalytic N2-to-NH3 conversion. Fuel. 2024, 358, 130157. doi: 10.1016/j.fuel.2023.130157
  25. Li, G.; Yue, Q.; Fu, P.; Wang, K.; Zhou, Y.; Wang, J. Ionic dye based covalent organic frameworks for photothermal water evaporation. Adv. Funct. Mater. 2023, 33, 2213810. doi: 10.1002/adfm.202213810
  26. Ejaz, M.; Mohamed, M.G.; Kuo, S.-W. Solid state chemical transformation provides a fully benzoxazine-linked porous organic polymer displaying enhanced CO2 capture and supercapacitor performance. Polym. Chem. 2023, 14, 2494–2509. doi: 10.1039/D3PY00158J
  27. Su, X.; Yang, X.-F.; Huang, Y.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2018, 52, 656–664. doi: 10.1021/acs.accounts.8b00478
  28. Shan, P.; Ye, H.; Qian, B.; Zheng, Y.; Xiao, G. Boosting the catalytic activity of high-order Ruddlesden-Popper perovskite SrEu2Fe2O7-δ air electrode by A-site La doping for CO2 electrolysis in solid oxide electrolysis cells. Fuel 2024, 367, 131507. doi: 10.1016/j.fuel.2024.131507
  29. Feric, T.G.; Hamilton, S.T.; Ko, B.H.; Lee, G.A.; Verma, S.; Jiao, F.; Park, A.H.A. Highly tunable syngas product ratios enabled by novel nanoscale hybrid electrolytes designed for combined CO2 capture and electrochemical conversion. Adv. Funct. Mater. 2023, 33, 2210017. doi: 10.1002/adfm.202210017
  30. Hong, Y.H.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Multi-functional photocatalytic systems for solar fuel production. J. Mater. Chem. A 2023, 11, 14614–14629. doi: 10.1039/D3TA02356G
  31. Ghoussoub, M.; Xia, M.; Duchesne, P.N.; Segal, D.; Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 2019, 12, 1122–1142. doi: 10.1039/C8EE02790K
  32. Moretti, C.; Patil, V.; Falter, C.; Geissbühler, L.; Patt, A.; Steinfeld, A. Technical, economic and environmental analysis of solar thermochemical production of drop-in fuels. Sci. Total Environ. 2023, 901, 166005. doi: 10.1016/j.scitotenv.2023.166005
  33. Giacoppo, G.; Trocino, S.; Lo Vecchio, C.; Baglio, V.; Díez-García, M.I.; Aricò, A.S.; Barbera, O. Numerical 3D model of a novel photoelectrolysis tandem cell with solid electrolyte for green hydrogen production. Energies. 2023, 16, 1953. doi: 10.3390/en16041953
  34. Yao, S.; Okumoto, M.; Madokoro, K.; Shimogami, J.; Suzuki, E.; Yashima, T. Plasma conversion of methane and CO2 using a tubular circle-to-plate reactor. J. Chem. Eng. Jpn. 2003, 36, 435–440. doi: 10.1252/jcej.36.435
  35. Wan, X.; Li, Y.; Chen, Y.; Ma, J.; Liu, Y.-A.; Zhao, E.-D.; Gu, Y.; Zhao, Y.; Cui, Y.; Li, R.; et al. A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability. Nat. Commun. 2024, 15, 1273. doi: 10.1038/s41467-024-45516-4
  36. Ren, Y.; Fu, Y.; Li, N.; You, C.; Huang, J.; Huang, K.; Sun, Z.; Zhou, J.; Si, Y.; Zhu, Y.; et al. Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency. Nat. Commun. 2024, 15, 4675. doi: 10.1038/s41467-024-49003-8
  37. Li, X.; Li, L.; Chu, X.; Liu, X.; Chen, G.; Guo, Q.; Zhang, Z.; Wang, M.; Wang, S.; Tahn, A.; et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat. Commun. 2024, 15, 5639. doi: 10.1038/s41467-024-49928-0
  38. Liu, H.; Chen, B.; Chen, Y.; Zhou, M.; Tian, F.; Li, Y.; Jiang, J.; Zhai, W. Bioinspired self-standing, self‐floating 3d solar evaporators breaking the trade-off between salt cycle and heat localization for continuous seawater desalination. Adv. Mater. 2023, 35, 2301596. doi: 10.1002/adma.202301596
  39. Yang, B.; Zhang, Z.; Liu, P.; Fu, X.; Wang, J.; Cao, Y.; Tang, R.; Du, X.; Chen, W.; Li, Z. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 2023, 622, 499–506. doi: 10.1038/s41586-023-06509-3
  40. Zou, H.; Meng, X.; Zhao, X.; Qiu, J. Hofmeister Effect-Enhanced Hydration Chemistry of Hydrogel for High-Efficiency Solar‐Driven Interfacial Desalination. Adv. Mater. 2023, 35, 2207262. doi: 10.1002/adma.202207262
  41. Wang, J.; Sun, M.; Liu, C.; Ye, Y.; Chen, M.; Zhao, Z.; Zhang, Y.; Wu, X.; Wang, K.; Zhou, Y. Customized Microenvironments Spontaneously Facilitate Coupled Engineering of Real‐Life Large-Scale Clean Water Capture and Pollution Remediation. Adv. Mater. 2023, 35, 2306103. doi: 10.1002/adma.202306103
  42. Xiang, B.; Gong, J.; Sun, Y.; Li, J. Robust PVA/GO@ MOF membrane with fast photothermal self-cleaning property for oily wastewater purification. J. Hazard. Mater. 2024, 462, 132803. doi: 10.1016/j.jhazmat.2023.132803
  43. Noureen, L.; Wang, Q.; Ismail, P.M.; Alomar, M.; Arshad, N.; Irshad, M.S.; Xu, Q.; Wang, X. Multifunctional aerogel with antibiofouling properties for efficient solar steam generation and seawater desalination. Nano Today 2024, 54, 102130. doi: 10.1016/j.nantod.2023.102130
  44. Lv, C.; Bai, X.; Ning, S.; Song, C.; Guan, Q.; Liu, B.; Li, Y.; Ye, J. Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance. ACS Nano 2023, 17, 1725–1738. doi: 10.1021/acsnano.2c09025
  45. Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.-Y.; Li, G. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221. doi: 10.1021/acsnano.0c02250
  46. Tang, T.; Wang, Z.; Guan, J. Optimizing the Electrocatalytic Selectivity of Carbon Dioxide Reduction Reaction by Regulating the Electronic Structure of Single-Atom M-N-C Materials. Adv. Funct. Mater. 2022, 32, 2111504. doi: 10.1002/adfm.202111504
  47. Ban, J.; Wen, X.; Xu, H.; Wang, Z.; Liu, X.; Cao, G.; Shao, G.; Hu, J. Dual Evolution in Defect and Morphology of Single-Atom Dispersed Carbon Based Oxygen Electrocatalyst. Adv. Funct. Mater. 2021, 31, 2010472. doi: 10.1002/adfm.202010472
  48. Chen, M.; Zhang, H.; Li, H.; Zhao, Z.; Wang, K.; Zhou, Y.; Zhao, X.; Dubal, D.P. CxNy-based materials as gas sensors: Structure, performance, mechanism and perspective. Coord. Chem. Rev. 2024, 503, 215653. doi: 10.1016/j.ccr.2023.215653
  49. Wang, T.; Chen, F.; Jiang, L.; Li, J.; Chen, K.; Gao, J. Metal-Organic-Framework-Derived Bromine and Nitrogen Dual-Doped Porous Carbon for CO2 Photocycloaddition Reaction. Inorg. Chem. 2024, 63, 4224–4232. doi: 10.1021/acs.inorgchem.3c04308
  50. Wang, T.; Chen, F.; An, H.; Chen, K.; Gao, J. Metal-organic-framework-derived boron and nitrogen dual-doped hollow mesoporous carbon for photo-thermal catalytic conversion of CO2. J. Solid. State Chem. 2024, 332, 124570. doi: 10.1016/j.jssc.2024.124570
  51. Liu, Y.; Chen, Y.; Liu, Y.; Chen, Z.; Yang, H.; Yue, Z.; Fang, Q.; Zhi, Y.; Shan, S. Zn and N co-doped porous carbon nanosheets for photothermally-driven CO2 cycloaddition. J. Catal. 2022, 407, 65–76. doi: 10.1016/j.jcat.2022.01.016
  52. Yang, Z.; Xie, Y.; Feng, Y.; Yao, J. Tea saponin-derived porous carbon bearing rich oxygen-containing groups towards high efficient CO2 fixation. J. Environ. Chem. Eng. 2024, 12, 112310. doi: 10.1016/j.jece.2024.112310
  53. Rong, W.; Ding, M.; Wang, Y.; Kong, S.; Yao, J. Porous biochar with a tubular structure for photothermal CO2 cycloaddition: One-step doping versus two-step doping. Sep. Purif. Technol. 2025, 353, 128427. doi: 10.1016/j.seppur.2024.128427
  54. Paliwal, K.S.; Sarkar, D.; Mitra, A.; Mahalingam, V. Chitosan-Derived N-Doped Carbon for Light-Mediated Carbon Dioxide Fixation into Epoxides. ChemPlusChem. 2023, 88, e202300448. doi: 10.1002/cplu.202300448
  55. Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. doi: 10.1038/nchem.1095
  56. Yang, Q.; Yang, C.-C.; Lin, C.-H.; Jiang, H.-L. Metal-Organic-Framework-Derived Hollow N-Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angew. Chem. Int. Ed. 2019, 58, 3511–3515. doi: 10.1002/anie.201813494
  57. Gong, L.; Sun, J.; Liu, Y.; Yang, G. Photoinduced synergistic catalysis on Zn single-atom-loaded hierarchical porous carbon for highly efficient CO2 cycloaddition conversion. J. Mater. Chem. A 2021, 9, 21689–21694. doi: 10.1039/D1TA06159C
  58. Yang, Q.; Peng, H.; Zhang, Q.; Qian, X.; Chen, X.; Tang, X.; Dai, S.; Zhao, J.; Jiang, K.; Yang, Q.; et al. Atomically Dispersed High-Density Al-N4 Sites in Porous Carbon for Efficient Photodriven CO2 Cycloaddition. Adv. Mater. 2021, 33, 2103186. doi: 10.1002/adma.202103186
  59. Dai, W.; Zou, M.; Long, J.; Li, B.; Zhang, S.; Yang, L.; Wang, D.; Mao, P.; Luo, S.; Luo, X. Nanoporous N-doped Carbon/ZnO hybrid derived from zinc aspartate: An acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Appl. Surf. Sci. 2021, 540, 148311. doi: 10.1016/j.apsusc.2020.148311
  60. Duan, C.; Ding, M.; Feng, Y.; Cao, M.; Yao, J. ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Sep. Purif. Technol. 2022, 285, 120359. doi: 10.1016/j.seppur.2021.120359
  61. Tang, F.; Wang, L.; Ma, L.; Fang, Y.; Huang, J.; Liu, Y.-N. Protein-Zn(II) networks derived N-doped porous carbon-supported ZnS for photothermally catalytic CO2 conversion. J. CO2 Util. 2021, 45, 101431. doi: 10.1016/j.jcou.2020.101431
  62. Xu, Y.; Wang, P.; Zhan, X.; Dai, W.; Li, Q.; Zou, J.; Luo, X. Enhancing the Lewis acidity of single atom Tb via introduction of boron to achieve efficient photothermal synergistic CO2 cycloaddition. J. Colloid. Interf. Sci. 2024, 673, 134–142. doi: 10.1016/j.jcis.2024.06.090
  63. Wang, Q.; Ma, W.; Qian, J.; Li, N.; Zhang, C.; Deng, M.; Du, H. S-scheme towards interfacial charge transfer between POMs and MOFs for efficient visible-light photocatalytic Cr (VI) reduction. Environ. Pollut. 2024, 347, 123707. doi: 10.1016/j.envpol.2024.123707
  64. Fang, Z.; Deng, Z.; Wan, X.; Li, Z.; Ma, X.; Hussain, S.; Ye, Z.; Peng, X. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition. Appl. Catal. B-Environ. 2021, 296, 120329. doi: 10.1016/j.apcatb.2021.120329
  65. He, J.; Li, J.; Han, Q.; Si, C.; Niu, G.; Li, M.; Wang, J.; Niu, J. Photoactive Metal-Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Appl. Mater. Inter. 2019, 12, 2199–2206. doi: 10.1021/acsami.9b13538
  66. Chen, X.; Wei, M.; Yang, A.; Jiang, F.; Li, B.; Kholdeeva, O.A.; Wu, L. Near-Infrared Photothermal Catalysis for Enhanced Conversion of Carbon Dioxide under Mild Conditions. ACS Appl. Mater. Inter. 2022, 14, 5194–5202. doi: 10.1021/acsami.1c18889
  67. Wang, T.; Zhu, Y.; Wang, W.; Niu, J.; Lu, Z.; He, P. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984. doi: 10.1007/s12274-024-6626-1
  68. Dutta, S.; Mukherjee, S.; Qazvini, O.T.; Gupta, A.K.; Sharma, S.; Mahato, D.; Babarao, R.; Ghosh, S.K. Three-in-One C2H2-Selectivity-Guided Adsorptive Separation across an Isoreticular Family of Cationic Square-Lattice MOFs. Angew. Chem. Int. Ed. 2022, 61, e202114132. doi: 10.1002/anie.202114132
  69. Belmabkhout, Y.; Guillerm, V.; Eddaoudi, M. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chem. Eng. J. 2016, 296, 386–397. doi: 10.1016/j.cej.2016.03.124
  70. Dong, A.; Chen, D.; Li, Q.; Qian, J. Metal-organic frameworks for greenhouse gas applications. Small 2023, 19, 2201550. doi: 10.1002/smll.202201550
  71. Ma, C.; Urban, J.J. Hydrogen-bonded polyimide/metal-organic framework hybrid membranes for ultrafast separations of multiple gas pairs. Adv. Funct. Mater. 2019, 29, 1903243. doi: 10.1002/adfm.201903243
  72. Gao, W.-Y.; Chen, Y.; Niu, Y.; Williams, K.; Cash, L.; Perez, P.J.; Wojtas, L.; Cai, J.; Chen, Y.S.; Ma, S. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 2014, 53, 2615–2619. doi: 10.1002/anie.201309778
  73. Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J.S.; Zou, R.; Zhao, Y. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 2016, 138, 2142–2145. doi: 10.1021/jacs.5b13335
  74. Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energ. Environ. Sci. 2012, 5, 6465–6473. doi: 10.1039/C1EE02234B
  75. Shi, Y.; Zhao, J.; Xu, H.; Hou, S.-L.; Zhao, B. Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst. Sci. China Chem. 2021, 64, 1316–1322. doi: 10.1007/s11426-021-1006-9
  76. Zou, R.; Li, P.-Z.; Zeng, Y.-F.; Liu, J.; Zhao, R.; Duan, H.; Luo, Z.; Wang, J.-G.; Zou, R.; Zhao, Y. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion. Small 2016, 12, 2334–2343. doi: 10.1002/smll.201503741
  77. Chen, Y.; Li, F.; Liu, L.; Zhou, Y.-H. Implanting multi-functional ionic liquids into MOF nodes for boosting CO2 cycloaddition under solventless and cocatalyst-free conditions. Chem. Eng. J. 2024, 490, 151657. doi: 10.1016/j.cej.2024.151657
  78. Sharma, N.; Dhankhar, S.S.; Nagaraja, C.M. A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous Mesoporous Mater. 2019, 280, 372–378. doi: 10.1016/j.micromeso.2019.02.026
  79. Jiang, L.; Wu, D.; Huang, Z.; Chen, F.; Chen, K.; Ibragimov, A.B.; Gao, J. In Situ Pyrolysis of ZIF-67 to Construct CO2N0.67@ZIF-67 for Photocatalytic CO2 Cycloaddition Reaction. Inorg. Chem. 2024, 63, 14761–14769. doi: 10.1021/acs.inorgchem.4c02504
  80. Wang, Y.; Ding, M.; Rong, W.; Kong, S.; Yao, J. In situ growth of Fe-doped zeolitic imidazolate framework on MXene for boosting photodriven CO2 cycloaddition. Sep. Purif. Technol. 2024, 345, 127399. doi: 10.1016/j.seppur.2024.127399
  81. Wu, Y.; Gao, L.; Zhou, X.-C.; Yu, X.; Meng, Y.-R.; Zuo, J.-L.; Su, J.; Yuan, S. Designing photothermal catalytic systems in multi-component MOFs for enhanced conversion of carbon dioxide. Chem. Commun. 2024, 60, 9825–9828. doi: 10.1039/D4CC03203A
  82. Tu, X.; Sun, C.; Hu, Y.; Chen, Y.; Zhu, S.; Qu, J.; Zhu, Z.; Zhang, X.; Zheng, H. Bimetallic Fe/Co photothermal catalyst for fixing CO2 to cyclic carbonates under atmospheric pressure. Catal. Sci. Technol. 2024, 14, 3201–3210. doi: 10.1039/D4CY00242C
  83. Duan, C.; Xie, Y.; Ding, M.; Feng, Y.; Yao, J. Design of carbonized melamine sponge@MOFs composites bearing diverse acid-base properties for boosting thermal and solar-driven CO2 cycloaddition. J. CO2 Util. 2022, 64, 102158. doi: 10.1016/j.jcou.2022.102158
  84. Lyu, H.; Li, H.; Hanikel, N.; Wang, K.; Yaghi, O.M. Covalent organic frameworks for carbon dioxide capture from air. J. Am. Chem. Soc. 2022, 144, 12989–12995. doi: 10.1021/jacs.2c05382
  85. Kurisingal, J.F.; Kim, H.; Choe, J.H.; Hong, C.S. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord. Chem. Rev. 2022, 473, 214835. doi: 10.1016/j.ccr.2022.214835
  86. Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Acc. Chem. Res. 2022, 55, 2978–2997. doi: 10.1021/acs.accounts.2c00326
  87. Ding, L.-G.; Yao, B.-J.; Wu, W.-X.; Yu, Z.-G.; Wang, X.-Y.; Kan, J.-L.; Dong, Y.-B. Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO2 Cycloaddition via Visible-Light-Induced Photothermal Conversion. Inorg. Chem. 2021, 60, 12591–12601. doi: 10.1021/acs.inorgchem.1c01975
  88. Kondrat, S.; Feng, G.; Bresme, F.; Urbakh, M.; Kornyshev, A.A. Theory and simulations of ionic liquids in nanoconfinement. Chem. Rev. 2023, 123, 6668–6715. doi: 10.1021/acs.chemrev.2c00728
  89. Li, X.; Chen, K.; Guo, R.; Wei, Z. Ionic liquids functionalized MOFs for adsorption. Chem. Rev. 2023, 123, 10432–10467. doi: 10.1021/acs.chemrev.3c00248
  90. Fang, X.; Yang, L.; Dai, Z.; Cong, D.; Zheng, D.; Yu, T.; Tu, R.; Zhai, S.; Yang, J.; Song, F.; Wu, H.; Deng, W.-Q.; Liu, C. Poly (ionic liquid) s for Photo-Driven CO2 Cycloaddition: Electron Donor–Acceptor Segments Matter. Adv. Sci. 2023, 2206687. doi: 10.1002/advs.202206687
  91. Liu, Y.; Sun, J.; Huang, H.; Bai, L.; Zhao, X.; Qu, B.; Xiong, L.; Bai, F.; Tang, J.; Jing, L. Improving CO2 photoconversion with ionic liquid and Co single atoms. Nat. Commun. 2023, 14, 1457. doi: 10.1038/s41467-023-36980-5
  92. Guo, Y.; Chen, W.; Feng, L.; Fan, Y.; Liang, J.; Wang, X.; Zhang, X. Greenery-inspired nanoengineering of bamboo-like hierarchical porous nanotubes with spatially organized bifunctionalities for synergistic photothermal catalytic CO2 fixation. J. Mater. Chem. A. 2022, 10, 12418–12428. doi: 10.1039/D2TA02885A
  93. Guo, Q.; Xia, S.-G.; Li, X.-B.; Wang, Y.; Liang, F.; Lin, Z.-S.; Tung, C.-H.; Wu, L.-Z. Flower-like cobalt carbide for efficient carbon dioxide conversion. Chem. Commun. 2020, 56, 7849–7852. doi: 10.1039/D0CC01091J
  94. Fang, Z.; Wang, Y.; Hu, Y.; Yao, B.; Ye, Z.; Peng, X. A CO2-philic ferrocene-based porous organic polymer for solar-driven CO2 conversion from flue gas. J. Mater. Chem. A 2023, 11, 18272–18279. doi: 10.1039/D3TA03622G
  95. Tailor, N.K.; Singh, S.; Saini, S.K.; Kaivalya; Afroz, M.A.; Kumar, M.; Peter, S.C.; Pant, K.K.; Satapathi, S. Unveiling the Potential of Halide Perovskites for Seasonally Adaptive CO2 Photoreduction under Low Light Conditions. Adv. Funct. Mater. 2024, 34, 2402894. doi: 10.1002/adfm.202402894
  96. Bi, W.; Hu, Y.; Jiang, H.; Zhang, L.; Li, C. Revealing the sudden alternation in Pt@ h-BN nanoreactors for nearly 100 % CO2-to-CH4 photoreduction. Adv. Funct. Mater. 2021, 31, 2010780. doi: 10.1002/adfm.202010780
  97. Xu, Y.; Ren, Y.; Zhou, G.; Feng, S.; Yang, Z.; Dai, S.; Lu, Z.; Zhou, T. Amide‐Engineered Metal-Organic Porous Liquids Toward Enhanced CO2 Photoreduction Performance. Adv. Funct. Mater. 2024, 34, 2313695. doi: 10.1002/adfm.202313695
  98. Dong, M.; Zhou, J.; Zhong, J.; Li, H.T.; Sun, C.-Y.; Han, Y.-D.; Kou, J.-N.; Kang, Z.-H.; Wang, X.-L.; Su, Z.-M. CO2 dominated bifunctional catalytic sites for efficient industrial exhaust conversion. Adv. Funct. Mater. 2022, 32, 2110136. doi: 10.1002/adfm.202110136
  99. Saini, N.; Malik, A.; Jain, S.L. Light driven chemical fixation and conversion of CO2 into cyclic carbonates using transition metals: A review on recent advancements. Coord. Chem. Rev. 2024, 502, 215636. doi: 10.1016/j.ccr.2023.215636
  100. Tan, C.-L.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Isolated Single-Atom Cobalt in the ZnIn2S4 Monolayer with Exposed Zn Sites for CO2 Photofixation. ACS Catal. 2023, 13, 8317–8329. doi: 10.1021/acscatal.3c00992
  101. Prajapati, P.K.; Kumar, A.; Jain, S.L. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 and Epoxides Using CoPc/TiO2 Hybrid under Mild Conditions. ACS Sustain. Chem. Eng. 2018, 6, 7799–7809. doi: 10.1021/acssuschemeng.8b00755
  102. Bakiro, M.; Hussein Ahmed, S.; Alzamly, A. Efficient Visible-Light Photocatalytic Cycloaddition of CO2 and Propylene Oxide Using Reduced Graphene Oxide Supported BiNbO4. ACS Sustain. Chem. Eng. 2020, 8, 12072–12079. doi: 10.1021/acssuschemeng.0c03363
  103. Gong, X.; Zhang, Y.; Xu, Y.; Zhai, G.; Liu, X.; Bao, X.; Wang, Z.; Liu, Y.; Wang, P.; Cheng, H.; et al. Synergistic Effect between CO2 Chemisorption Using Amino-Modified Carbon Nitride and Epoxide Activation by High-Energy Electrons for Plasmon-Assisted Synthesis of Cyclic Carbonates. ACS Appl. Mater. Interfaces 2022, 14, 51029–51040. doi: 10.1021/acsami.2c16382
  104. Kumar, A.; Samanta, S.; Srivastava, R. Graphitic Carbon Nitride Modified with Zr-Thiamine Complex for Efficient Photocatalytic CO2 Insertion to Epoxide: Comparison with Traditional Thermal Catalysis. ACS Appl. Nano Mater. 2021, 4, 6805–6820. doi: 10.1021/acsanm.1c00887
  105. Cheng, R.; Wang, A.; Sang, S.; Liang, H.; Liu, S.; Tsiakaras, P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: An economic and ecofriendly choice. Chem. Eng. J. 2023, 466, 142982. doi: 10.1016/j.cej.2023.142982
  106. Jiang, H.; Zang, C.; Guo, L.; Gao, X. Carbon vacancies enriched carbon nitride nanotubes for Pd coordination environment optimization: Highly efficient photocatalytic hydrodechlorination and CO2 cycloaddition. Sci. Total Environ. 2022, 838, 155920. doi: 10.1016/j.scitotenv.2022.155920
  107. Elgohary, E.A.; Mohamed, Y.M.A.; Rabie, S.T.; Salih, S.A.; Fekry, A.M.; El Nazer, H.A. Highly selective visible-light-triggered CO2 fixation to cyclic carbonates under mild conditions using TiO2/multiwall carbon nanotubes (MWCNT) grafted with Pt or Pd nanoparticles. New J. Chem. 2021, 45, 17301–17312. doi: 10.1039/D1NJ03123F
  108. Alzard, R.H.; Siddig, L.A.; Abdelhamid, A.S.; Ramachandran, T.; Alzamly, A. Structural analysis and photocatalytic activities of bismuth-lanthanide oxide perovskites. J. Solid. State Chem. 2024, 329, 124359. doi: 10.1016/j.jssc.2023.124359
  109. Khalid, A.; Razzaq, Z.; Ahmad, P.; Al-Anzi, B.S.; Rehman, F.; Muhammad, S.; Khandaker, M.U.; Albasher, G.; Alsultan, N.; Liaqat, I.; et al. Visible-light promoted chemical fixation of carbon dioxide with epoxide into cyclic carbonates over S-scheme CdS-CeO2 photocatalyst. Mater. Sci. Semicond. Process. 2023, 165, 107649. doi: 10.1016/j.mssp.2023.107649
  110. Li, G.; Sui, X.; Cai, X.; Hu, W.; Liu, X.; Chen, M.; Zhu, Y. Precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2. Angew. Chem. Int. Ed. 2021, 133, 10667–10670. doi: 10.1002/ange.202100071
  111. Wong, K.T.; Brigljević, B.; Lee, J.H.; Yoon, S.Y.; Jang, S.B.; Choong, C.E.; Nah, I.; Kim, H.; Roh, H.-S.; Kwak, S.K. Highly Exposed NH2 Edge on Fragmented g-C3N4 Framework with Integrated Molybdenum Atoms for Catalytic CO2 Cycloaddition: DFT and Techno‐Economic Assessment. Small 2023, 19, 2204336. doi: 10.1002/smll.202204336
  112. Liu, C.; Niu, H.; Wang, D.; Gao, C.; Said, A.; Liu, Y.; Wang, G.; Tung, C.-H.; Wang, Y. S-Scheme Bi-oxide/Ti-oxide Molecular Hybrid for Photocatalytic Cycloaddition of Carbon Dioxide to Epoxides. ACS Catal. 2022, 12, 8202–8213. doi: 10.1021/acscatal.2c02256
  113. Wang, D.; Said, A.; Liu, Y.; Niu, H.; Liu, C.; Wang, G.; Li, Z.; Tung, C.-H.; Wang, Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg. Chem. 2022, 61, 14887–14898. doi: 10.1021/acs.inorgchem.2c02605
  114. Said, A.; Zhang, G.; Wang, D.; Chen, G.; Liu, Y.; Gao, F.; Tung, C.-H.; Wang, Y. Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorg. Chem. 2023, 62, 13476–13484. doi: 10.1021/acs.inorgchem.3c01842
  115. Bakiro, M.; Ahmed, S.H.; Alzamly, A. Cycloaddition of CO2 to propylene oxide using BiNbO4/NH2-MIL-125(Ti) composites as visible-light photocatalysts. J. Environ. Chem. Eng. 2020, 8, 104461. doi: 10.1016/j.jece.2020.104461
  116. Hussein Ahmed, S.; Bakiro, M.; Alzamly, A. Photocatalytic Activities of FeNbO4/NH2-MIL-125(Ti) Composites toward the Cycloaddition of CO2 to Propylene Oxide. Molecules 2021, 26, 1693. doi: 10.3390/molecules26061693
  117. Erzina, M.; Guselnikova, O.; Elashnikov, R.; Trelin, A.; Zabelin, D.; Postnikov, P.; Siegel, J.; Zabelina, A.; Ulbrich, P.; Kolska, Z.; et al. BioMOF coupled with plasmonic CuNPs for sustainable CO2 fixation in cyclic carbonates at ambient conditions. J. CO2 Util. 2023, 69, 102416. doi: 10.1016/j.jcou.2023.102416
  118. Hu, Y.; Abazari, R.; Sanati, S.; Nadafan, M.; Carpenter-Warren, C.L.; Slawin, A.M.Z.; Zhou, Y.; Kirillov, A.M. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO2 Fixation. ACS Appl. Mater. Interfaces 2023, 15, 37300–37311. doi: 10.1021/acsami.3c04506
  119. Payra, S.; Roy, S. From Trash to Treasure: Probing Cycloaddition and Photocatalytic Reduction of CO2 over Cerium-Based Metal-Organic Frameworks. J. Phys. Chem. C 2021, 125, 8497–8507. doi: 10.1021/acs.jpcc.1c00662
  120. He, Y.; Xu, M.; Xia, J.; Zhang, C.; Song, X.; Zhao, X.; Fu, M.; Li, S.; Liu, X. Effect of exposed active sites of semi-amorphous Fe-BTC on photocatalytic CO2 cycloaddition reaction under ambient conditions. Mol. Catal. 2023, 542, 113134. doi: 10.1016/j.mcat.2023.113134
  121. Zhang, H.; Si, S.; Zhai, G.; Li, Y.; Liu, Y.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; et al. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Appl. Catal. B-Environ. 2023, 337, 122909. doi: 10.1016/j.apcatb.2023.122909
  122. Shi, Q.; Chen, M.-H.; Xiong, J.; Li, T.; Feng, Y.-Q.; Zhang, B. Porphyrin-Based Two-Dimensional Metal-Organic framework nanosheets for efficient photocatalytic CO2 transformation. Chem. Eng. J. 2024, 481, 148301. doi: 10.1016/j.cej.2023.148301
  123. Siddig, L.A.; Alzard, R.H.; Nguyen, H.L.; Göb, C.R.; Alnaqbi, M.A.; Alzamly, A. Hexagonal Layer Manganese Metal-Organic Framework for Photocatalytic CO2 Cycloaddition Reaction. ACS Omega 2022, 7, 9958–9963. doi: 10.1021/acsomega.2c00663
  124. Carrasco, S.; Orcajo, G.; Martínez, F.; Imaz, I.; Kavak, S.; Arenas-Esteban, D.; Maspoch, D.; Bals, S.; Calleja, G.; Horcajada, P. Hf/porphyrin-based metal-organic framework PCN-224 for CO2 cycloaddition with epoxides. Mater. Today Adv. 2023, 19, 100390. doi: 10.1016/j.mtadv.2023.100390
  125. Liang, J.; Jiang, X.; Zhang, X.; Yu, H.; Shi, J.; Wang, M. Co-porphyrin-based metal-organic framework for light-driven efficient green conversion of CO2 and epoxides. Chem. Eng. J. 2024, 499, 156428. doi: 10.1016/j.cej.2024.156428
  126. Zhai, G.; Liu, Y.; Mao, Y.; Zhang, H.; Lin, L.; Li, Y.; Wang, Z.; Cheng, H.; Wang, P.; Zheng, Z.; et al. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Appl. Catal. B-Environ. 2022, 301, 120793. doi: 10.1016/j.apcatb.2021.120793
  127. Zhai, G.; Liu, Y.; Lei, L.; Wang, J.; Wang, Z.; Zheng, Z.; Wang, P.; Cheng, H.; Dai, Y.; Huang, B. Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal-Organic Framework. ACS Catal. 2021, 11, 1988–1994. doi: 10.1021/acscatal.0c05145
  128. Li, Y.; Zhai, G.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides. Chem. Eng. J. 2022, 437, 135363. doi: 10.1016/j.cej.2022.135363
  129. Li, L.; Liu, W.; Shi, T.; Shang, S.; Zhang, X.; Wang, H.; Tian, Z.; Chen, L.; Xie, Y. Photoexcited Single-Electron Transfer for Efficient Green Synthesis of Cyclic Carbonate from CO2. ACS Mater. Lett. 2023, 5, 1219–1226. doi: 10.1021/acsmaterialslett.3c00069
  130. Huang, Z.-W.; Hu, K.-Q.; Mei, L.; Wang, C.-Z.; Chen, Y.-M.; Wu, W.-S.; Chai, Z.-F.; Shi, W.-Q. Potassium Ions Induced Framework Interpenetration for Enhancing the Stability of Uranium-Based Porphyrin MOF with Visible-Light-Driven Photocatalytic Activity. Inorg. Chem. 2020, 60, 651–659. doi: 10.1021/acs.inorgchem.0c02473
  131. Fan, S.-C.; Chen, S.-Q.; Wang, J.-W.; Li, Y.-P.; Zhang, P.; Wang, Y.; Yuan, W.; Zhai, Q.-G. Precise Introduction of Single Vanadium Site into Indium-Organic Framework for CO2 Capture and Photocatalytic Fixation. Inorg. Chem. 2022, 61, 14131–14139. doi: 10.1021/acs.inorgchem.2c02250
  132. Liu, L.; Zhang, J.; Cheng, X.; Xu, M.; Kang, X.; Wan, Q.; Han, B.; Wu, N.; Zheng, L.; Ma, C. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Res. 2022, 16, 181–188. doi: 10.1007/s12274-022-4664-0
  133. Xie, X.; Li, H.; Cao, W.; Ke, D.; Dong, Z.; Tian, L.; Xiong, X.; Zhang, J. A bifunctional catalyst derived from copper metal-organic framework for highly selective photocatalytic CO2 reduction and CO2 cycloaddition reaction. J. Mol. Struct. 2024, 1312, 138556. doi: 10.1016/j.molstruc.2024.138556
  134. Sun, W.; Zhu, J.; Zhang, M.; Meng, X.; Chen, M.; Feng, Y.; Chen, X.; Ding, Y. Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. Chin. J. Catal. 2022, 43, 2273–2300. doi: 10.1016/S1872-2067(21)63939-6
  135. Xu, M.L.; Lu, M.; Qin, G.-Y.; Wu, X.-M.; Yu, T.; Zhang, L.-N.; Li, K.; Cheng, X.; Lan, Y.-Q. Piezo-photocatalytic synergy in BiFeO3@ COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem. Int. Ed. 2022, 134, e202210700. doi: 10.1002/ange.202210700
  136. Li, X.; Niu, X.; Fu, P.; Song, Y.; Zhang, E.; Dang, Y.; Yan, J.; Feng, G.; Lei, S.; Hu, W. Macrocycle-on-COF photocatalyst constructed by in-situ linker exchange for efficient photocatalytic CO2 cycloaddition. Appl. Catal. B-Environ. 2024, 350, 123943. doi: 10.1016/j.apcatb.2024.123943
  137. Xiong, J.; Chen, M.-H.; Li, X.-Y.; Shi, Q.; Xu, Y.-H.; Feng, Y.-Q.; Zhang, B. Metalloporphyrin-based covalent triazine frameworks for efficient photocatalytic CO2 cycloaddition at ambient conditions. Dyes Pigm. 2025, 233, 112531. doi: 10.1016/j.dyepig.2024.112531
  138. Qiu, L.-Q.; Li, H.-R.; He, L.-N. Incorporating catalytic units into nanomaterials: Rational design of multipurpose catalysts for CO2 valorization. Acc. Chem. Res. 2023, 56, 2225–2240. doi: 10.1021/acs.accounts.3c00316
  139. Giri, A.; Patra, A. Porous organic polymers: Promising testbed for heterogeneous reactive oxygen species mediated photocatalysis and nonredox CO2 fixation. Chem. Rec. 2022, 22, e202200071. doi: 10.1002/tcr.202200071
  140. Bao, Y.; Liu, J.; Zhang, Y.; Zheng, L.; Ma, J.; Zhang, F.; Xiong, Y.; Meng, X.; Dai, Z.; Xiao, F.-S. Porous organic polymers with diverse quaternary phosphonium units for chemical fixation of CO2 with low concentration. Fuel 2023, 331, 125909. doi: 10.1016/j.fuel.2022.125909
  141. Sarkar, C.; Paul, R.; Dao, D.Q.; Xu, S.; Chatterjee, R.; Shit, S.C.; Bhaumik, A.; Mondal, J. Unlocking Molecular Secrets in a Monomer-Assembly-Promoted Zn-Metalated Catalytic Porous Organic Polymer for Light-Responsive CO2 Insertion. ACS Appl. Mater. Interfaces 2022, 14, 37620–37636. doi: 10.1021/acsami.2c06982
  142. Cui, C.; Sa, R.; Hong, Z.; Zhong, H.; Wang, R. Ionic-liquid-modified click-based porous organic polymers for controlling capture and catalytic conversion of CO2. ChemSusChem 2020, 13, 180–187. doi: 10.1002/cssc.201902715
  143. Jingyi, Y.; Siqi, S.; Huaitao, P.; Qihao, Y.; Liang, C. Integration of Atomically Dispersed Ga Sites with C3N4 Nanosheets for Efficient Photo-driven CO2 Cycloaddition. Chem. J. Chin. U 2022, 43.
  144. Wang, Y.; Liu, H.; Shi, Q.; Miao, Z.; Duan, H.; Wang, Y.; Rong, H.; Zhang, J. Single-Atom Titanium on Mesoporous Nitrogen, Oxygen-Doped Carbon for Efficient Photo-thermal Catalytic CO2 Cycloaddition by a Radical Mechanism. Angew. Chem. Int. Ed. 2024, 63, e202404911. doi: 10.1002/anie.202404911
  145. Zhang, H.; Zhai, G.; Lei, L.; Zhang, C.; Liu, Y.; Wang, Z.; Cheng, H.; Zheng, Z.; Wang, P.; Dai, Y.; et al. Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. J. Colloid. Interf. Sci. 2022, 625, 33–40. doi: 10.1016/j.jcis.2022.05.146
  146. Zhou, X.; Zhang, H.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Xing, D.; Liu, Y.; Huang, B. Enhanced cycloaddition between CO2 and epoxide over a bismuth-based metal organic framework due to a synergistic photocatalytic and photothermal effect. J. Colloid. Interf. Sci. 2024, 658, 805–814. doi: 10.1016/j.jcis.2023.12.112
  147. Jiang, B.; Zhang, C.; Yang, N.; Zhou, Q.; Zhang, L.; Li, J.; Yang, W.; Yang, X.; Zhang, L. 2D/2D ZIF-L-Derived Znδ+ (0 ≤ δ ≤ 2) and N Codoped Carbon Skeleton@ZnIn2S4 S-Scheme Heterojunction for Solar-Driven CO2 Cycloaddition. ACS Sustain. Chem. Eng. 2024, 12, 6584–6595. doi: 10.1021/acssuschemeng.3c08407
  148. Lu, W.; Shi, X.; Zhou, H.; Luo, W.; Wang, L.; He, H. Tailoring and properties of a novel solar energy-triggered regenerative bionic fiber adsorbent for CO2 capture. Chem. Eng. J. 2022, 449, 137885. doi: 10.1016/j.cej.2022.137885
  149. Tang, Z.; Zhu, F.; Zhou, J.; Chen, W.; Wang, K.; Liu, M.; Wang, N.; Li, N. Monolithic NF@ ZnO/Au@ ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4. Appl. Catal. B-Environ. 2022, 309, 121267. doi: 10.1016/j.apcatb.2022.121267
  150. Li, D.; Sun, J.; Ma, R.; Wei, J. High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in-situ photoreduced Pt-CuOx catalyst. J. Energy Chem. 2022, 71, 460–469. doi: 10.1016/j.jechem.2022.04.020
  151. Xu, Y.; Liu, M.; Tong, F.; Ma, F.; He, X.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y. Strain-assisted in-situ formed oxygen defective WO3 film for photothermal-synergistic reverse water gas shift reaction and single-particle study. Chem. Eng. J. 2022, 433, 134199. doi: 10.1016/j.cej.2021.134199
  152. Wu, Y.; Yu, X.-F.; Du, Y.; Xia, L.; Guo, Q.; Zhang, K.; Zhang, W.; Liu, S.; Peng, Y.; Li, Z.; et al. A combination of two swords thermo-bluelight-synergistic-catalytic CO2 cycloaddition on ZnIn2S4 exposed abundant of Zinc cation sites. Appl. Catal. B-Environ. 2023, 331, 122732. doi: 10.1016/j.apcatb.2023.122732
  153. Zhang, W.; Li, Z.; Yu, X.-F.; Zhang, K.; Liu, S.; Du, Y.; Guo, Q.; Zhang, L.; Ding, X.; Tang, H.; et al. Photothermal Synergistic Catalysis over Defective Zn3In2S6 for CO2 Fixation. Inorg. Chem. 2024, 63, 2954–2966. doi: 10.1021/acs.inorgchem.3c03520
  154. Tu, X.; Sun, Q.; Zhu, S.; Sun, C.; Hu, Y.; Qu, J.; Zhu, Z.; Duan, X.; Zhang, X.; Zheng, H. Nanoflower Fe-base complex for efficient CO2 fixation under atmospheric pressure. J. Environ. Chem. Eng. 2024, 12, 112544. doi: 10.1016/j.jece.2024.112544
  155. Zhang, L.; Tu, X.; Chen, Y.; Zhu, S.; Sun, C.; Song, Y.; Zheng, H. Synthesis of cyclic carbonates by photothermal catalytic coupling of CO2 and epoxides under solvent-free conditions. Appl. Catal. A-Gen. 2023, 666, 119435. doi: 10.1016/j.apcata.2023.119435
  156. Zhang, L.; Tu, X.; Chen, Y.; Han, W.; Chen, L.; Sun, C.; Zhu, S.; Song, Y.; Zheng, H. Photothermal catalysis without solvent for fixing CO2 to cyclic carbonate. Mol. Catal. 2023, 538, 112971. doi: 10.1016/j.mcat.2023.112971