Downloads
Download


This work is licensed under a Creative Commons Attribution 4.0 International License.
Review
Upcycling of Waste Plastics into Value-Added Chemicals
Jin Xu and Jing Zhang *
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
* Correspondence: jingzhang8507@ecust.edu.cn
Received: 8 November 2024; Revised: 22 January 2025; Accepted: 24 March 2025; Published: 27 March 2025
Abstract: The rapid increase in plastic production has led to a severe plastic waste crisis, driving the development of various recycling technologies to mitigate this growing issue. However, these technologies often encounter substantial economic and environmental challenges in their implementation. An increasingly attractive alternative is chemical upcycling, which can transform waste plastics into value-added chemicals. This review systematically examines upcycling technologies applicable to major commercial plastics, including polyethylene terephthalate (PET), polyolefins, polystyrene (PS), and polyvinyl chloride (PVC). We focus on key strategies such as solvolysis, catalytic pyrolysis, hydrocracking and hydrogenolysis, along with some emerging approaches such as electrocatalysis and photooxidation, aiming to summarize emerging trends in the catalytic chemical upcycling of waste plastics.
Keywords:
plastics chemical upcycling added value chemicalsReferences
- Sardon, H.; Dove, A.P. Plastics recycling with a difference. Science 2018, 360, 380–381. doi: 10.1126/science.aat4997
- Plastics–The Facts. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 27 October 2024).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. doi: 10.1126/sciadv.1700782
- Global Plastics Outlook. Available online: https://www.oecd.org/en/publications/2022/06/global-plastics-outlook_f065ef59.html (accessed on 27 October 2024).
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. doi: 10.1126/science.abg5433
- Stubbins, A.; Law, K.L.; Muñoz, S.E.; Bianchi, T.S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55. doi: 10.1126/science.abb0354
- Pan, Q.; Liu, Q.-Y.; Zheng, J.; Li, Y.-H.; Xiang, S.; Sun, X.-J.; He, X.-S. Volatile and semi-volatile organic compounds in landfill gas: Composition characteristics and health risks. Environ. Int. 2023, 174, 107886. doi: 10.1016/j.envint.2023.107886
- He, X.-S.; Pan, Q.; Xi, B.-D.; Zheng, J.; Liu, Q.-Y.; Sun, Y. Volatile and semi-volatile organic compounds in landfill leachate: Concurrence, removal and the influencing factors. Water Res. 2023, 245, 120566. doi: 10.1016/j.watres.2023.120566
- Vlasopoulos, A.; Malinauskaite, J.; Żabnieńska-Góra, A.; Jouhara, H. Life cycle assessment of plastic waste and energy recovery. Energy 2023, 277, 127576. doi: 10.1016/j.energy.2023.127576
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. doi: 10.1002/anie.201915651
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste- A Review. Procedia Environ. Sci. 2016, 35, 701–708. doi: 10.1016/j.proenv.2016.07.069
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. doi: 10.1038/s41570-017-0046
- The New Plastics Economy: Rethinking the Future of Plastics. Available online: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 27 October 2024).
- Barnard, E.; Rubio Arias, J.J.; Thielemans, W. Chemolytic depolymerisation of PET: A review. Green Chem. 2021, 23, 3765–3789. doi: 10.1039/D1GC00887K
- Faust, K.; Denifl, P.; Hapke, M. Recent Advances in Catalytic Chemical Recycling of Polyolefins. ChemCatChem 2023, 15, e202300310. doi: 10.1002/cctc.202300310
- Marquez, C.; Martin, C.; Linares, N.; De Vos, D. Catalytic routes towards polystyrene recycling. Mater. Horiz. 2023, 10, 1625–1640. doi: 10.1039/D2MH01215D
- Jiang, X.; Zhu, B.; Zhu, M. An overview on the recycling of waste poly(vinyl chloride). Green Chem. 2023, 25, 6971–7025. doi: 10.1039/D3GC02585C
- Sajwan, D.; Sharma, A.; Sharma, M.; Krishnan, V. Upcycling of Plastic Waste Using Photo-, Electro-, and Photoelectrocatalytic Approaches: A Way toward Circular Economy. ACS Catal. 2024, 14, 4865–4926. doi: 10.1021/acscatal.4c00290
- Hou, Q.; Zhen, M.; Qian, H.; Nie, Y.; Bai, X.; Xia, T.; Laiq Ur Rehman, M.; Li, Q.; Ju, M. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2021, 2, 100514. doi: 10.1016/j.xcrp.2021.100514
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. doi: 10.1016/j.wasman.2017.07.044
- Chen, H.; Wan, K.; Zhang, Y.; Wang, Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem 2021, 14, 4123–4136. doi: 10.1002/cssc.202100652
- Li, X.; Wang, J.; Zhang, T.; Yang, S.; Sun, M.; Qian, X.; Wang, T.; Zhao, Y. Sustainable catalytic strategies for the transformation of plastic wastes into valued products. Chem. Eng. Sci. 2023, 276, 118729. doi: 10.1016/j.ces.2023.118729
- Chen, X.; Wang, Y.; Zhang, L. Recent Progress in the Chemical Upcycling of Plastic Wastes. ChemSusChem 2021, 14, 4137–4151. doi: 10.1002/cssc.202100868
- Kosloski-Oh, S.C.; Wood, Z.A.; Manjarrez, Y.; de los Rios, J.P.; Fieser, M.E. Catalytic methods for chemical recycling or upcycling of commercial polymers. Mater. Horiz. 2021, 8, 1084–1129. doi: 10.1039/D0MH01286F
- Di, J.; Reck, B.K.; Miatto, A.; Graedel, T.E. United States plastics: Large flows, short lifetimes, and negligible recycling. Resour. Conserv. Recycl. 2021, 167, 105440. doi: 10.1016/j.resconrec.2021.105440
- Smith, R.L.; Takkellapati, S.; Riegerix, R.C. Recycling of Plastics in the United States: Plastic Material Flows and Polyethylene Terephthalate (PET) Recycling Processes. ACS Sustain. Chem. Eng. 2022, 10, 2084–2096. doi: 10.1021/acssuschemeng.1c06845
- Directives 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed on 27 October 2024).
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.-H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. doi: 10.1016/j.jclepro.2020.120536
- Lettner, M.; Schöggl, J.-P.; Stern, T. Factors influencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. J. Clean. Prod. 2017, 157, 289–298. doi: 10.1016/j.jclepro.2017.04.077
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. doi: 10.1021/acs.est.9b03755
- Ignatyev, I.A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A Review. ChemSusChem 2014, 7, 1579–1593. doi: 10.1002/cssc.201300898
- Welle, F. Is PET bottle-to-bottle recycling safe? Evaluation of post-consumer recycling processes according to the EFSA guidelines. Resour. Conserv. Recycl. 2013, 73, 41–45. doi: 10.1016/j.resconrec.2013.01.012
- Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Mekonnen, T.H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 2020, 182, 109390. doi: 10.1016/j.polymdegradstab.2020.109390
- Suzuki, G.; Uchida, N.; Tanaka, K.; Higashi, O.; Takahashi, Y.; Kuramochi, H.; Yamaguchi, N.; Osako, M. Global discharge of microplastics from mechanical recycling of plastic waste. Environ. Pollut. 2024, 348, 123855. doi: 10.1016/j.envpol.2024.123855
- Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556. doi: 10.1038/s41929-021-00648-4
- Guselnikova, O.; Semyonov, O.; Sviridova, E.; Gulyaev, R.; Gorbunova, A.; Kogolev, D.; Trelin, A.; Yamauchi, Y.; Boukherroub, R.; Postnikov, P. “Functional upcycling” of polymer waste towards the design of new materials. Chem. Soc. Rev. 2023, 52, 4755–4832. doi: 10.1039/D2CS00689H
- An, W.; Wang, X.-L.; Liu, X.; Wu, G.; Xu, S.; Wang, Y.-Z. Chemical recovery of thermosetting unsaturated polyester resins. Green Chem. 2022, 24, 701–712. doi: 10.1039/D1GC03724B
- Zhao, X.; Long, Y.; Xu, S.; Liu, X.; Chen, L.; Wang, Y.-Z. Recovery of epoxy thermosets and their composites. Mater. Today 2023, 64, 72–97. doi: 10.1016/j.mattod.2022.12.005
- Ren, T.; Zhan, H.; Xu, H.; Chen, L.; Shen, W.; Xu, Y.; Zhao, D.; Shao, Y.; Wang, Y. Recycling and high-value utilization of polyethylene terephthalate wastes: A review. Environ. Res. 2024, 249, 118428. doi: 10.1016/j.envres.2024.118428
- Singh, A.; Rorrer, N.A.; Nicholson, S.R.; Erickson, E.; DesVeaux, J.S.; Avelino, A.F.T.; Lamers, P.; Bhatt, A.; Zhang, Y.; Avery, G.; et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021, 5, 2479–2503. doi: 10.1016/j.joule.2021.06.015
- Anglou, E.; Ganesan, A.; Chang, Y.; Gołąbek, K.M.; Fu, Q.; Bradley, W.; Jones, C.W.; Sievers, C.; Nair, S.; Boukouvala, F. Process development and techno-economic analysis for mechanochemical recycling of poly(ethylene terephthalate). Chem. Eng. J. 2024, 481, 148278. doi: 10.1016/j.cej.2023.148278
- Uekert, T.; Singh, A.; DesVeaux, J.S.; Ghosh, T.; Bhatt, A.; Yadav, G.; Afzal, S.; Walzberg, J.; Knauer, K.M.; Nicholson, S.R.; et al. Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics. ACS Sustain. Chem. Eng. 2023, 11, 965–978. doi: 10.1021/acssuschemeng.2c05497
- Urm, J.J.; Choi, J.H.; Kim, C.; Lee, J.M. Techno-economic analysis and process optimization of a PET chemical recycling process based on Bayesian optimization. Comput. Chem. Eng. 2023, 179, 108451. doi: 10.1016/j.compchemeng.2023.108451
- Zhang, M.; Yu, Y.; Yan, B.; Song, X.; Liu, Y.; Feng, Y.; Wu, W.; Chen, B.; Han, B.; Mei, Q. Full valorisation of waste PET into dimethyl terephthalate and cyclic arylboronic esters. Appl. Catal. B-Environ. Energy 2024, 352, 124055. doi: 10.1016/j.apcatb.2024.124055
- Mo, S.; Kou, J.; Zeng, J.; Song, K.; Zhang, Y.; He, S.; Hu, Y.; Guo, Y.; Liu, X.; Chen, X.; et al. Upcycling PET wastes into high value-added 1,4-cyclohexanedimethanol (CHDM) via tandem reactions. Chem. Eng. J. 2024, 500, 157249. doi: 10.1016/j.cej.2024.157249
- Chen, Q.; Yan, H.; Zhao, K.; Wang, S.; Zhang, D.; Li, Y.; Fan, R.; Li, J.; Chen, X.; Zhou, X.; et al. Catalytic oxidation upcycling of polyethylene terephthalate to commodity carboxylic acids. Nat. Commun. 2024, 15, 10732. doi: 10.1038/s41467-024-54822-w
- Wei, X.; Zheng, W.; Chen, X.; Qiu, J.; Sun, W.; Xi, Z.; Zhao, L. Chemical upcycling of poly(ethylene terephthalate) with binary mixed alcohols toward value-added copolyester by depolymerization and repolymerization strategy. Chem. Eng. Sci. 2024, 294, 120103. doi: 10.1016/j.ces.2024.120103
- Wang, K.; Guo, C.; Li, J.; Wang, K.; Cao, X.; Liang, S.; Wang, J. High value-added conversion and functional recycling of waste polyethylene terephthalate (PET) plastics: A comprehensive review. J. Environ. Chem. Eng. 2024, 12, 113539. doi: 10.1016/j.jece.2024.113539
- Onwucha, C.N.; Ehi-Eromosele, C.O.; Ajayi, S.O.; Schaefer, M.; Indris, S.; Ehrenberg, H. Uncatalyzed Neutral Hydrolysis of Waste PET Bottles into Pure Terephthalic Acid. Ind. Eng. Chem. Res. 2023, 62, 6378–6385. doi: 10.1021/acs.iecr.2c04117
- Pereira, P.; Savage, P.E.; Pester, C.W. Neutral Hydrolysis of Post-Consumer Polyethylene Terephthalate Waste in Different Phases. ACS Sustain. Chem. Eng. 2023, 11, 7203–7209. doi: 10.1021/acssuschemeng.3c00946
- Pereira, P.; Slear, W.; Testa, A.; Reasons, K.; Guirguis, P.; Savage, P.E.; Pester, C.W. Fast hydrolysis for chemical recycling of polyethylene terephthalate (PET). RSC Sustain. 2024, 2, 1508–1514. doi: 10.1039/D4SU00034J
- Liu, Y.; Wang, M.; Pan, Z. Catalytic depolymerization of polyethylene terephthalate in hot compressed water. J. Supercrit. Fluids 2012, 62, 226–231. doi: 10.1016/j.supflu.2011.11.001
- Wang, Y.; Zhang, Y.; Song, H.; Wang, Y.; Deng, T.; Hou, X. Zinc-catalyzed ester bond cleavage: Chemical degradation of polyethylene terephthalate. J. Cleaner Prod. 2019, 208, 1469–1475. doi: 10.1016/j.jclepro.2018.10.117
- Campanelli, J.R.; Cooper, D.G.; Kamal, M.R. Catalyzed hydrolysis of polyethylene terephthalate melts. J. Appl. Polym. Sci. 1994, 53, 985–991. doi: 10.1002/app.1994.070530801
- Yun, L.-X.; Qiao, M.; Zhang, B.; Zhang, H.-T.; Wang, J.-X. Upcycling plastic wastes into high-performance nano-MOFs by efficient neutral hydrolysis for water adsorption and photocatalysis. J. Mater. Chem. A 2024, 12, 19452–19461. doi: 10.1039/D4TA02597K
- Yoshioka, T.; Motoki, T.; Okuwaki, A. Kinetics of Hydrolysis of Poly(ethylene terephthalate) Powder in Sulfuric Acid by a Modified Shrinking-Core Model. Ind. Eng. Chem. Res. 2001, 40, 75–79. doi: 10.1021/ie000592u
- Islam, M.S.; Islam, Z.; Hasan, R.; Islam Molla Jamal, A.S. Acidic hydrolysis of recycled polyethylene terephthalate plastic for the production of its monomer terephthalic acid. Prog. Rubber Plast. Recycl. Technol. 2023, 39, 12–25. doi: 10.1177/14777606221128038
- Yoshioka, T.; Okayama, N.; Okuwaki, A. Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model. Ind. Eng. Chem. Res. 1998, 37, 336–340. doi: 10.1021/ie970459a
- Yang, W.; Liu, R.; Li, C.; Song, Y.; Hu, C. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Waste Manag. 2021, 135, 267–274. doi: 10.1016/j.wasman.2021.09.009
- Yang, W.; Wang, J.; Jiao, L.; Song, Y.; Li, C.; Hu, C. Easily recoverable and reusable p-toluenesulfonic acid for faster hydrolysis of waste polyethylene terephthalate. Green Chem. 2022, 24, 1362–1372. doi: 10.1039/D1GC04567A
- Hoang, C.N.; Nguyen, N.T.; Doan, T.Q.; Hoang, D. Novel efficient method of chemical upcycling of waste poly(ethylene terephthalate) bottles by acidolysis with adipic acid under microwave irradiation. Polym. Degrad. Stab. 2022, 206, 110175. doi: 10.1016/j.polymdegradstab.2022.110175
- Abedsoltan, H. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. Polym. Eng. Sci. 2023, 63, 2651–2674. doi: 10.1002/pen.26406
- Paliwal, N.R.; Mungray, A.K. Ultrasound assisted alkaline hydrolysis of poly(ethylene terephthalate) in presence of phase transfer catalyst. Polym. Degrad. Stab. 2013, 98, 2094–2101. doi: 10.1016/j.polymdegradstab.2013.06.030
- Barredo, A.; Asueta, A.; Amundarain, I.; Leivar, J.; Miguel-Fernández, R.; Arnaiz, S.; Epelde, E.; López-Fonseca, R.; Gutiérrez-Ortiz, J.I. Chemical recycling of monolayer PET tray waste by alkaline hydrolysis. J. Environ. Chem. Eng. 2023, 11, 109823. doi: 10.1016/j.jece.2023.109823
- Zhang, F.; Chen, S.; Nie, S.; Luo, J.; Lin, S.; Wang, Y.; Yang, H. Waste PET as a Reactant for Lanthanide MOF Synthesis and Application in Sensing of Picric Acid. Polymers 2019, 11, 2015. doi: 10.3390/polym11122015
- Zhou, L.; Wang, S.; Chen, Y.; Serre, C. Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous Mesoporous Mater. 2019, 290, 109674. doi: 10.1016/j.micromeso.2019.109674
- Liu, K.; Gao, X.; Liu, C.-X.; Shi, R.; Tse, E.C.M.; Liu, F.; Chen, Y. Energy-Saving Hydrogen Production by Seawater Splitting Coupled with PET Plastic Upcycling. Adv. Energy Mater. 2024, 14, 2304065. doi: 10.1002/aenm.202304065
- Du, M.; Xue, R.; Yuan, W.; Cheng, Y.; Cui, Z.; Dong, W.; Qiu, B. Tandem Integration of Biological and Electrochemical Catalysis for Efficient Polyester Upcycling under Ambient Conditions. Nano Lett. 2024, 24, 9768–9775. doi: 10.1021/acs.nanolett.4c02966
- Zhang, X.; Wei, R.; Yan, M.; Wang, X.; Wei, X.; Wang, Y.; Wang, L.; Zhang, J.; Yin, S. One-Pot Synthesis Inorganic-Organic Hybrid PdNi Bimetallenes for PET Electrocatalytic Value-Added Transformation. Adv. Funct. Mater. 2024, 34, 2401796. doi: 10.1002/adfm.202401796
- Zhou, H.; Ren, Y.; Li, Z.; Xu, M.; Wang, Y.; Ge, R.; Kong, X.; Zheng, L.; Duan, H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679. doi: 10.1038/s41467-021-25048-x
- Lozano-Martinez, P.; Torres-Zapata, T.; Martin-Sanchez, N. Directing Depolymerization of PET with Subcritical and Supercritical Ethanol to Different Monomers through Changes in Operation Conditions. ACS Sustain. Chem. Eng. 2021, 9, 9846–9853. doi: 10.1021/acssuschemeng.1c02489
- Liu, S.; Wang, Z.; Li, L.; Yu, S.; Xie, C.; Liu, F. Butanol alcoholysis reaction of polyethylene terephthalate using acidic ionic liquid as catalyst. J. Appl. Polym. Sci. 2013, 130, 1840–1844. doi: 10.1002/app.39246
- Chen, J.; Lv, J.; Ji, Y.; Ding, J.; Yang, X.; Zou, M.; Xing, L. Alcoholysis of PET to produce dioctyl terephthalate by isooctyl alcohol with ionic liquid as cosolvent. Polym. Degrad. Stab. 2014, 107, 178–183. doi: 10.1016/j.polymdegradstab.2014.05.013
- Kim, B.-K.; Hwang, G.-C.; Bae, S.-Y.; Yi, S.-C.; Kumazawa, H. Depolymerization of polyethyleneterephthalate in supercritical methanol. J. Appl. Polym. Sci. 2001, 81, 2102–2108. doi: 10.1002/app.1645.abs
- Tang, J.; Meng, X.; Cheng, X.; Zhu, Q.; Yan, D.; Zhang, Y.; Lu, X.; Shi, C.; Liu, X. Mechanistic Insights of Cosolvent Efficient Enhancement of PET Methanol Alcohololysis. Ind. Eng. Chem. Res. 2023, 62, 4917–4927. doi: 10.1021/acs.iecr.2c04419
- Hofmann, M.; Sundermeier, J.; Alberti, C.; Enthaler, S. Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect 2020, 5, 10010–10014. doi: 10.1002/slct.202002260
- Tanaka, S.; Sato, J.; Nakajima, Y. Capturing ethylene glycol with dimethyl carbonate towards depolymerisation of polyethylene terephthalate at ambient temperature. Green Chem. 2021, 23, 9412–9416. doi: 10.1039/D1GC02298A
- Huang, Y.; Ma, Y.; Cheng, Y.; Wang, L.; Li, X. Dimethyl Terephthalate Hydrogenation to Dimethyl Cyclohexanedicarboxylates over Bimetallic Catalysts on Carbon Nanotubes. Ind. Eng. Chem. Res. 2014, 53, 4604–4613. doi: 10.1021/ie500015m
- Xiao, H.; Zhang, C.; Zhao, J.; Zheng, Z.; Li, Y. Selective hydrogenation of dimethyl terephthalate over a potassium-modified Ni/SiO2 catalyst. RSC Adv. 2023, 13, 16363–16368. doi: 10.1039/D3RA02223D
- Xiao, X.; Xin, H.; Qi, Y.; Zhao, C.; Wu, P.; Li, X. One-pot conversion of dimethyl terephthalate to 1,4-cyclohexanedimethanol. Appl. Catal. A 2022, 632, 118510. doi: 10.1016/j.apcata.2022.118510
- Huang, Y.; Si, Y.; Guo, X.; Qin, C.; Huang, Y.; Wang, L.; Gao, X.; Yao, S.; Cheng, Y. Valorization of Waste Polyester for 1,4-Cyclohexanedimethanol Production. ACS Catal. 2025, 4570-4578. doi: 10.1021/acscatal.4c06816
- Li, Y.; Wang, M.; Liu, X.; Hu, C.; Xiao, D.; Ma, D. Catalytic Transformation of PET and CO2 into High-Value Chemicals. Angew. Chem. Int. Ed. 2022, 61, e202117205. doi: 10.1002/anie.202117205
- Helmer, R.; Borkar, S.S.; Li, A.; Mahnaz, F.; Vito, J.; Bishop, M.; Iftakher, A.; Hasan, M.M.F.; Rangarajan, S.; Shetty, M. Tandem Methanolysis and Catalytic Transfer Hydrogenolysis of Polyethylene Terephthalate to p-Xylene Over Cu/ZnZrOx Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202416384. doi: 10.1002/anie.202416384
- Pardal, F.; Tersac, G. Kinetics of poly(ethylene terephthalate) glycolysis by diethylene glycol. Part II: Effect of temperature, catalyst and polymer morphology. Polym. Degrad. Stab. 2007, 92, 611–616. doi: 10.1016/j.polymdegradstab.2007.01.008
- Javed, S.; Fisse, J.; Vogt, D. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide. Polymers 2023, 15, 687. doi: 10.3390/polym15030687
- López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J.I. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym. Degrad. Stab. 2010, 95, 1022–1028. doi: 10.1016/j.polymdegradstab.2010.03.007
- Javed, S.; Vogt, D. Development of Eco-Friendly and Sustainable PET Glycolysis Using Sodium Alkoxides as Catalysts. ACS Sustain. Chem. Eng. 2023, 11, 11541–11547. doi: 10.1021/acssuschemeng.3c01872
- Wang, Z.; Jin, Y.; Wang, Y.; Tang, Z.; Wang, S.; Xiao, G.; Su, H. Cyanamide as a Highly Efficient Organocatalyst for the Glycolysis Recycling of PET. ACS Sustain. Chem. Eng. 2022, 10, 7965–7973. doi: 10.1021/acssuschemeng.2c01235
- Javed, S.; Ropel, D.; Vogt, D. Sodium ethoxide as an environmentally benign and cost-effective catalyst for chemical depolymerization of post-consumer PET waste. Green Chem. 2023, 25, 1442–1452. doi: 10.1039/D2GC04548F
- Wang, T.; Shen, C.; Yu, G.; Chen, X. The upcycling of polyethylene terephthalate using protic ionic liquids as catalyst. Polym. Degrad. Stab. 2022, 203, 110050. doi: 10.1016/j.polymdegradstab.2022.110050
- Zhang, C.; He, H.; Shen, Y.; Li, Q.; Ye, X. Green Catalytic Ionic Liquids Containing Organophosphorus for Efficient Glycolysis of Waste PET Bottle Flakes. Ind. Eng. Chem. Res. 2024, 63, 10903–10913. doi: 10.1021/acs.iecr.4c01549
- Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131. doi: 10.1039/D0GC00327A
- Zhang, H.; Choi, J.I.; Choi, J.-W.; Jeong, S.-M.; Lee, P.-S.; Hong, D.-Y. A highly porous MgAl2O4 spinel-supported Mn3O4 as a reusable catalyst for glycolysis of postconsumer PET waste. J. Ind. Eng. Chem. 2022, 115, 251–262. doi: 10.1016/j.jiec.2022.08.006
- Sun, Q.; Zheng, Y.-Y.; Yun, L.-X.; Wu, H.; Liu, R.-K.; Du, J.-T.; Gu, Y.-H.; Shen, Z.-G.; Wang, J.-X. Fe3O4 Nanodispersions as Efficient and Recoverable Magnetic Nanocatalysts for Sustainable PET Glycolysis. ACS Sustain. Chem. Eng. 2023, 11, 7586–7595. doi: 10.1021/acssuschemeng.3c01206
- Anggo Krisbiantoro, P.; Chiao, Y.-W.; Liao, W.; Sun, J.-P.; Tsutsumi, D.; Yamamoto, H.; Wu, C.W. K. Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe2O4 (M = Co, Ni, Cu and Zn) spinel. Chem. Eng. J. 2022, 450, 137926. doi: 10.1016/j.cej.2022.137926
- Cao, J.; Lin, Y.; Jiang, W.; Wang, W.; Li, X.; Zhou, T.; Sun, P.; Pan, B.; Li, A.; Zhang, Q. Mechanism of the Significant Acceleration of Polyethylene Terephthalate Glycolysis by Defective Ultrathin ZnO Nanosheets with Heteroatom Doping. ACS Sustain. Chem. Eng. 2022, 10, 5476–5488. doi: 10.1021/acssuschemeng.1c08656
- Mo, S.; Guo, Y.; Liu, X.; Wang, Y. Efficient depolymerization of PET over Ti-doped SBA-15 with abundant Lewis acid sites via glycolysis. Catal. Sci. Technol. 2023, 13, 6561–6569. doi: 10.1039/D3CY01127E
- Veregue, F.R.; Pereira da Silva, C.T.; Moisés, M.P.; Meneguin, J.G.; Guilherme, M.R.; Arroyo, P.A.; Favaro, S.L.; Radovanovic, E.; Girotto, E.M.; Rinaldi, A.W. Ultrasmall Cobalt Nanoparticles as a Catalyst for PET Glycolysis: A Green Protocol for Pure Hydroxyethyl Terephthalate Precipitation without Water. ACS Sustain. Chem. Eng. 2018, 6, 12017–12024. doi: 10.1021/acssuschemeng.8b02294
- Lechuga-Islas, V.D.; Sánchez-Cerrillo, D.M.; Stumpf, S.; Guerrero-Santos, R.; Schubert, U.S.; Guerrero-Sánchez, C. Thermo-responsive polymer catalysts for polyester recycling processes: switching from homogeneous catalysis to heterogeneous separations. Polym. Chem. 2023, 14, 1893–1904. doi: 10.1039/D2PY01520J
- Clark, R.A.; Shaver, M.P. Depolymerization within a Circular Plastics System. Chem. Rev. 2024, 124, 2617–2650. doi: 10.1021/acs.chemrev.3c00739
- Zhang, Y.; Tian, F.; Wu, Z.; Li, X.; Liu, X.; He, Y. Chemical conversion of waste PET to valued-added bis(2-hydroxyethyl) terephthalamide through aminolysis. Mater. Today Commun. 2022, 32, 104045. doi: 10.1016/j.mtcomm.2022.104045
- Mersha, D.A.; Gesese, T.N.; Sendekie, Z.B.; Admase, A.T.; Bezie, A.J. Operating conditions, products and sustainable recycling routes of aminolysis of polyethylene terephthalate (PET)—A review. Polym. Bull. 2024, 81, 11563–11579. doi: 10.1007/s00289-024-05259-0
- Demarteau, J.; Olazabal, I.; Jehanno, C.; Sardon, H. Aminolytic upcycling of poly(ethylene terephthalate) wastes using a thermally-stable organocatalyst. Polym. Chem. 2020, 11, 4875–4882. doi: 10.1039/D0PY00067A
- Natarajan, J.; Madras, G.; Chatterjee, K. Poly(ester amide)s from Poly(ethylene terephthalate) Waste for Enhancing Bone Regeneration and Controlled Release. ACS Appl. Mater. Interfaces 2017, 9, 28281–28297. doi: 10.1021/acsami.7b09299
- Padhan, R.K.; Gupta, A.A. Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Constr. Build. Mater. 2018, 158, 337–345. doi: 10.1016/j.conbuildmat.2017.09.147
- Chan, K.; Zinchenko, A. Conversion of waste bottles’ PET to a hydrogel adsorbent via PET aminolysis. J. Environ. Chem. Eng. 2021, 9, 106129. doi: 10.1016/j.jece.2021.106129
- Chan, K.; Zinchenko, A. Aminolysis-assisted hydrothermal conversion of waste PET plastic to N-doped carbon dots with markedly enhanced fluorescence. J. Environ. Chem. Eng. 2022, 10, 107749. doi: 10.1016/j.jece.2022.107749
- Kratish, Y.; Li, J.; Liu, S.; Gao, Y.; Marks, T.J. Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex. Angew. Chem. Int. Ed. 2020, 59, 19857–19861. doi: 10.1002/anie.202007423
- Jing, Y.; Wang, Y.; Furukawa, S.; Xia, J.; Sun, C.; Hülsey, M.J.; Wang, H.; Guo, Y.; Liu, X.; Yan, N. Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb2O5 Catalyst. Angew. Chem. Int. Ed. 2021, 60, 5527–5535. doi: 10.1002/anie.202011063
- Hongkailers, S.; Jing, Y.; Wang, Y.; Hinchiranan, N.; Yan, N. Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO2 Catalyst. ChemSusChem 2021, 14, 4330–4339. doi: 10.1002/cssc.202100956
- Ye, M.; Li, Y.; Yang, Z.; Yao, C.; Sun, W.; Zhang, X.; Chen, W.; Qian, G.; Duan, X.; Cao, Y.; et al. Ruthenium/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment. Angew. Chem. Int. Ed. 2023, 62, e202301024. doi: 10.1002/anie.202301024
- Gao, Z.; Ma, B.; Chen, S.; Tian, J.; Zhao, C. Converting waste PET plastics into automobile fuels and antifreeze components. Nat. Commun. 2022, 13, 3343. doi: 10.1038/s41467-022-31078-w
- Gala, A.; Guerrero, M.; Guirao, B.; Domine, M.E.; Serra, J.M. Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel. Energy Fuels 2020, 34, 5969–5982. doi: 10.1021/acs.energyfuels.0c00403
- Zou, L.; Xu, R.; Wang, H.; Wang, Z.; Sun, Y.; Li, M. Chemical recycling of polyolefins: A closed-loop cycle of waste to olefins. Natl. Sci. Rev. 2023, 10, nwad207. doi: 10.1093/nsr/nwad207
- Antelava, A.; Jablonska, N.; Constantinou, A.; Manos, G.; Salaudeen, S.A.; Dutta, A.; Al-Salem, S.M. Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification. Energy Fuels 2021, 35, 3558–3571. doi: 10.1021/acs.energyfuels.0c04017
- Wall, L.A.; Straus, S. Pyrolysis of polyolefins. J. Polym Sci. 1960, 44, 313–323. doi: 10.1002/pol.1960.1204414404
- Zhang, Y.; Fu, Z.; Wang, W.; Ji, G.; Zhao, M.; Li, A. Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste. ACS Sustain. Chem. Eng. 2022, 10, 91–103. doi: 10.1021/acssuschemeng.1c04915
- Selvam, E.; Yu, K.; Ngu, J.; Najmi, S.; Vlachos, D.G. Recycling polyolefin plastic waste at short contact times via rapid joule heating. Nat. Commun. 2024, 15, 5662. doi: 10.1038/s41467-024-50035-3
- Vollmer, I.; Jenks, M.J.F.; Mayorga González, R.; Meirer, F.; Weckhuysen, B.M. Plastic Waste Conversion over a Refinery Waste Catalyst. Angew. Chem. Int. Ed. 2021, 60, 16101–16108. doi: 10.1002/anie.202104110
- Dong, Z.; Chen, W.; Xu, K.; Liu, Y.; Wu, J.; Zhang, F. Understanding the Structure—Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catal. 2022, 12, 14882–14901. doi: 10.1021/acscatal.2c04915
- Akhtar, M.N.; Riaz, S.; Ahmad, N.; Jaseer, E.A. Pioneering Aromatic Generation from Plastic Waste via Catalytic Thermolysis: A Minireview. Energy Fuels 2024, 38, 11363–11390. doi: 10.1021/acs.energyfuels.4c00691
- Chen, W.; Lu, J.; Zhang, C.; Xie, Y.; Wang, Y.; Wang, J.; Zhang, R. Aromatic hydrocarbons production and synergistic effect of plastics and biomass via one-pot catalytic co-hydropyrolysis on HZSM-5. J. Anal. Appl. Pyrolysis 2020, 147, 104800. doi: 10.1016/j.jaap.2020.104800
- Xue, Y.; Johnston, P.; Bai, X. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics. Energy Convers. Manag. 2017, 142, 441–451. doi: 10.1016/j.enconman.2017.03.071
- Finelli, V.; Gentilin, V.; Mossotti, G.; Ricchiardi, G.; Piovano, A.; Crocellà, V.; Groppo, E. The role of porosity and acidity in the catalytic upcycling of polyethylene. Catal. Today 2023, 419, 114142. doi: 10.1016/j.cattod.2023.114142
- Duan, J.; Chen, W.; Wang, C.; Wang, L.; Liu, Z.; Yi, X.; Fang, W.; Wang, H.; Wei, H.; Xu, S.; et al. Coking-Resistant Polyethylene Upcycling Modulated by Zeolite Micropore Diffusion. J. Am. Chem. Soc. 2022, 144, 14269–14277. doi: 10.1021/jacs.2c05125
- Feng, J.; Duan, J.; Hung, C.-T.; Zhang, Z.; Li, K.; Ai, Y.; Yang, C.; Zhao, Y.; Yu, Z.; Zhang, Y.; et al. Micelles Cascade Assembly to Tandem Porous Catalyst for Waste Plastics Upcycling. Angew. Chem. Int. Ed. 2024, 63, e202405252. doi: 10.1002/anie.202405252
- Kokuryo, S.; Miyake, K.; Uchida, Y.; Tanaka, S.; Miyamoto, M.; Oumi, Y.; Mizusawa, A.; Kubo, T.; Nishiyama, N. Design of Zr- and Al-Doped *BEA-Type Zeolite to Boost LDPE Cracking. ACS Omega 2022, 7, 12971–12977. doi: 10.1021/acsomega.2c00283
- Zhou, S.; Li, P.; Pan, H.; Zhang, Y. Improvement of Aromatics Selectivity from Catalytic Pyrolysis of Low-Density Polyethylene with Metal-Modified HZSM-5 in a CO2 Atmosphere. Ind. Eng. Chem. Res. 2022, 61, 11407–11416. doi: 10.1021/acs.iecr.2c01287
- Fu, L.; Xiong, Q.; Wang, Q.; Cai, L.; Chen, Z.; Zhou, Y. Catalytic Pyrolysis of Waste Polyethylene Using Combined CaO and Ga/ZSM-5 Catalysts for High Value-Added Aromatics Production. ACS Sustain. Chem. Eng. 2022, 10, 9612–9623. doi: 10.1021/acssuschemeng.2c02881
- Qian, K.; Tian, W.; Yin, L.; Yang, Z.; Tian, F.; Chen, D. Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Appl. Catal. B-Environ. 2023, 339, 123159. doi: 10.1016/j.apcatb.2023.123159
- Wang, W.; Yao, C.; Ge, X.; Pu, X.; Yuan, J.; Sun, W.; Chen, W.; Feng, X.; Qian, G.; Duan, X.; et al. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation. J. Mater. Chem. A 2023, 11, 14933–14940. doi: 10.1039/D3TA01917A
- Yuan, H.; Li, C.; Shan, R.; Zhang, J.; Wu, Y.; Chen, Y. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Process. Technol. 2022, 238, 107531. doi: 10.1016/j.fuproc.2022.107531
- Kots, P.A.; Vance, B.C.; Vlachos, D.G. Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: A comparative study. React. Chem. Eng. 2022, 7, 41–54. doi: 10.1039/D1RE00447F
- Sun, J.; Dong, J.; Gao, L.; Zhao, Y.-Q.; Moon, H.; Scott, S.L. Catalytic Upcycling of Polyolefins. Chem. Rev. 2024, 124, 9457–9579. doi: 10.1021/acs.chemrev.3c00943
- Lee, W.-T.; Bobbink, F.D.; van Muyden, A.P.; Lin, K.-H.; Corminboeuf, C.; Zamani, R.R.; Dyson, P.J. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep. Phys. Sci. 2021, 2, 100332. doi: 10.1016/j.xcrp.2021.100332
- Liu, S.; Kots, P.A.; Vance, B.C.; Danielson, A.; Vlachos, D.G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 2021, 7, eabf8283. doi: 10.1126/sciadv.abf8283
- Vance, B.C.; Yuliu, Z.; Najmi, S.; Selvam, E.; Granite, J.E.; Yu, K.; Ierapetritou, M.G.; Vlachos, D.G. Unlocking naphtha from polyolefins using Ni-based hydrocracking catalysts. Chem. Eng. J. 2024, 487, 150468. doi: 10.1016/j.cej.2024.150468
- Rorrer, J.E.; Ebrahim, A.M.; Questell-Santiago, Y.; Zhu, J.; Troyano-Valls, C.; Asundi, A.S.; Brenner, A.E.; Bare, S.R.; Tassone, C.J.; Beckham, G.T.; et al. Role of Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons. ACS Catal. 2022, 12, 13969–13979. doi: 10.1021/acscatal.2c03596
- Li, L.; Luo, H.; Shao, Z.; Zhou, H.; Lu, J.; Chen, J.; Huang, C.; Zhang, S.; Liu, X.; Xia, L.; et al. Converting Plastic Wastes to Naphtha for Closing the Plastic Loop. J. Am. Chem. Soc. 2023, 145, 1847–1854. doi: 10.1021/jacs.2c11407
- Vance, B.C.; Kots, P.A.; Wang, C.; Hinton, Z.R.; Quinn, C.M.; Epps, T.H.; Korley, L.T.J.; Vlachos, D.G. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl. Catal. B-Environ. 2021, 299, 120483. doi: 10.1016/j.apcatb.2021.120483
- Wang, C.; Xie, T.; Kots, P.A.; Vance, B.C.; Yu, K.; Kumar, P.; Fu, J.; Liu, S.; Tsilomelekis, G.; Stach, E.A.; et al. Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia. JACS Au 2021, 1, 1422–1434. doi: 10.1021/jacsau.1c00200
- Chu, M.; Liu, Y.; Lou, X.; Zhang, Q.; Chen, J. Rational Design of Chemical Catalysis for Plastic Recycling. ACS Catal. 2022, 12, 4659–4679. doi: 10.1021/acscatal.2c01286
- Nakaji, Y.; Tamura, M.; Miyaoka, S.; Kumagai, S.; Tanji, M.; Nakagawa, Y.; Yoshioka, T.; Tomishige, K. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Appl. Catal. B-Environ. 2021, 285, 119805. doi: 10.1016/j.apcatb.2020.119805
- Rorrer, J.E.; Beckham, G.T.; Román-Leshkov, Y. Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions. JACS Au 2021, 1, 8–12. doi: 10.1021/jacsau.0c00041
- Rorrer, J.E.; Troyano-Valls, C.; Beckham, G.T.; Román-Leshkov, Y. Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes. ACS Sustain. Chem. Eng. 2021, 9, 11661–11666. doi: 10.1021/acssuschemeng.1c03786
- Chen, L.; Zhu, Y.; Meyer, L.C.; Hale, L.V.; Le, T.T.; Karkamkar, A.; Lercher, J.A.; Gutiérrez, O.Y.; Szanyi, J. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes. React. Chem. Eng. 2022, 7, 844–854. doi: 10.1039/D1RE00431J
- Ji, H.; Wang, X.; Wei, X.; Peng, Y.; Zhang, S.; Song, S.; Zhang, H. Boosting Polyethylene Hydrogenolysis Performance of Ru-CeO2 Catalysts by Finely Regulating the Ru Sizes. Small 2023, 19, 2300903. doi: 10.1002/smll.202300903
- Wang, C.; Yu, K.; Sheludko, B.; Xie, T.; Kots, P.A.; Vance, B.C.; Kumar, P.; Stach, E.A.; Zheng, W.; Vlachos, D.G. A general strategy and a consolidated mechanism for low-methane hydrogenolysis of polyethylene over ruthenium. Appl. Catal. B-Environ. 2022, 319, 121899. doi: 10.1016/j.apcatb.2022.121899
- Tennakoon, A.; Wu, X.; Paterson, A.L.; Patnaik, S.; Pei, Y.; LaPointe, A.M.; Ammal, S.C.; Hackler, R.A.; Heyden, A.; Slowing, I.I.; et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 2020, 3, 893–901. doi: 10.1038/s41929-020-00519-4
- Tennakoon, A.; Wu, X.; Meirow, M.; Howell, D.; Willmon, J.; Yu, J.; Lamb, J.V.; Delferro, M.; Luijten, E.; Huang, W.; et al. Two Mesoporous Domains Are Better Than One for Catalytic Deconstruction of Polyolefins. J. Am. Chem. Soc. 2023, 145, 17936–17944. doi: 10.1021/jacs.3c05447
- Basset, J.M.; Copéret, C.; Lefort, L.; Maunders, B.M.; Maury, O.; Le Roux, E.; Saggio, G.; Soignier, S.; Soulivong, D.; Sunley, G.J.; et al. Primary Products and Mechanistic Considerations in Alkane Metathesis. J. Am. Chem. Soc. 2005, 127, 8604–8605. doi: 10.1021/ja051679f
- Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2016, 2, e1501591. doi: 10.1126/sciadv.1501591
- Ellis, L.D.; Orski, S.V.; Kenlaw, G.A.; Norman, A.G.; Beers, K.L.; Román-Leshkov, Y.; Beckham, G.T. Tandem Heterogeneous Catalysis for Polyethylene Depolymerization via an Olefin-Intermediate Process. ACS Sustain. Chem. Eng. 2021, 9, 623–628. doi: 10.1021/acssuschemeng.0c07612
- Kim, D.; Hinton, Z.R.; Bai, P.; Korley, L.T.J.; Epps, T.H.; Lobo, R.F. Metathesis, molecular redistribution of alkanes, and the chemical upgrading of low-density polyethylene. Appl. Catal. B-Environ. 2022, 318, 121873. doi: 10.1016/j.apcatb.2022.121873
- Conk, R.J.; Hanna, S.; Shi, J.X.; Yang, J.; Ciccia, N.R.; Qi, L.; Bloomer, B.J.; Heuvel, S.; Wills, T.; Su, J.; et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 2022, 377, 1561–1566. doi: 10.1126/science.add1088
- Wang, N.M.; Strong, G.; DaSilva, V.; Gao, L.; Huacuja, R.; Konstantinov, I.A.; Rosen, M.S.; Nett, A.J.; Ewart, S.; Geyer, R.; et al. Chemical Recycling of Polyethylene by Tandem Catalytic Conversion to Propylene. J. Am. Chem. Soc. 2022, 144, 18526–18531. doi: 10.1021/jacs.2c07781
- Cui, Y.; Zhang, Y.; Cui, L.; Liu, Y.; Li, B.; Liu, W. Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production. J. Cleaner Prod. 2023, 411, 137303. doi: 10.1016/j.jclepro.2023.137303
- Wang, S.; Hu, Y.; Lu, S.; Zhang, B.; Li, S.; Chen, X. Highly Efficient Recycling Waste Plastic into Hydrogen and Carbon Nanotubes through a Double Layer Microwave-Assisted Pyrolysis Method. Macromol. Rapid Commun. 2024, 45, 2400270. doi: 10.1002/marc.202400270
- Jie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902–912. doi: 10.1038/s41929-020-00518-5
- Kanbur, U.; Zang, G.; Paterson, A.L.; Chatterjee, P.; Hackler, R.A.; Delferro, M.; Slowing, I.I.; Perras, F.A.; Sun, P.; Sadow, A.D. Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants. Chem 2021, 7, 1347–1362. doi: 10.1016/j.chempr.2021.03.007
- Wang, K.; Jia, R.; Cheng, P.; Shi, L.; Wang, X.; Huang, L. Highly Selective Catalytic Oxi-upcycling of Polyethylene to Aliphatic Dicarboxylic Acid under a Mild Hydrogen-Free Process. Angew. Chem. Int. Ed. 2023, 62, e202301340. doi: 10.1002/anie.202301340
- Jiao, X.; Zheng, K.; Chen, Q.; Li, X.; Li, Y.; Shao, W.; Xu, J.; Zhu, J.; Pan, Y.; Sun, Y.; et al. Photocatalytic Conversion of Waste Plastics into C2 Fuels under Simulated Natural Environment Conditions. Angew. Chem. Int. Ed. 2020, 59, 15497–15501. doi: 10.1002/anie.201915766
- Zhao, B.; Hu, Z.; Sun, Y.; Hajiayi, R.; Wang, T.; Jiao, N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J. Am. Chem. Soc. 2024, 146, 28605–28611. doi: 10.1021/jacs.4c07965
- Zayoud, A.; Dao Thi, H.; Kusenberg, M.; Eschenbacher, A.; Kresovic, U.; Alderweireldt, N.; Djokic, M.; Van Geem, K.M. Pyrolysis of end-of-life polystyrene in a pilot-scale reactor: Maximizing styrene production. Waste Manag. 2022, 139, 85–95. doi: 10.1016/j.wasman.2021.12.018
- Ojha, D.K.; Vinu, R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J. Anal. Appl. Pyrolysis 2015, 113, 349–359. doi: 10.1016/j.jaap.2015.02.024
- Amjad, U.-E.-S.; Ishaq, M.; Rehman, H.U.; Ahmad, N.; Sherin, L.; Hussain, M.; Mustafa, M. Diesel and gasoline like fuel production with minimum styrene content from catalytic pyrolysis of polystyrene. Environ. Prog. Sustain. Energy 2021, 40, e13493. doi: 10.1002/ep.13493
- Audisio, G.; Bertini, F.; Beltrame, P.L.; Carniti, P. Catalytic degradation of polymers: Part III—Degradation of polystyrene. Polym. Degrad. Stab. 1990, 29, 191–200. doi: 10.1016/0141-3910(90)90030-B
- Marczewski, M.; Kamińska, E.; Marczewska, H.; Godek, M.; Rokicki, G.; Sokołowski, J. Catalytic decomposition of polystyrene. The role of acid and basic active centers. Appl. Catal. B-Environ. 2013, 129, 236–246. doi: 10.1016/j.apcatb.2012.09.027
- Nikitas, N.F.; Skolia, E.; Gkizis, P.L.; Triandafillidi, I.; Kokotos, C.G. Photochemical aerobic upcycling of polystyrene plastics to commodity chemicals using anthraquinone as the photocatalyst. Green Chem. 2023, 25, 4750–4759. doi: 10.1039/D3GC00986F
- Oh, S.; Stache, E.E. Chemical Upcycling of Commercial Polystyrene via Catalyst-Controlled Photooxidation. J. Am. Chem. Soc. 2022, 144, 5745–5749. doi: 10.1021/jacs.2c01411
- Li, T.; Vijeta, A.; Casadevall, C.; Gentleman, A.S.; Euser, T.; Reisner, E. Bridging Plastic Recycling and Organic Catalysis: Photocatalytic Deconstruction of Polystyrene via a C-H Oxidation Pathway. ACS Catal. 2022, 12, 8155–8163. doi: 10.1021/acscatal.2c02292
- Qin, C.; Shen, T.; Tang, C.; Jiao, N. FeCl2-Promoted Cleavage of the Unactivated C-C Bond of Alkylarenes and Polystyrene: Direct Synthesis of Arylamines. Angew. Chem. Int. Ed. 2012, 51, 6971–6975. doi: 10.1002/anie.201202464
- Qin, Y.; Zhang, T.; Ching, H.Y.V.; Raman, G.S.; Das, S. Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes. Chem 2022, 8, 2472–2484. doi: 10.1016/j.chempr.2022.06.002
- Ong, A.; Teo, J.Y.Q.; Feng, Z.; Tan, T.T.Y.; Lim, J.Y.C. Organocatalytic Aerobic Oxidative Degradation of Polystyrene to Aromatic Acids. ACS Sustain. Chem. Eng. 2023, 11, 12514–12522. doi: 10.1021/acssuschemeng.3c01387
- Oh, S.; Stache, E.E. Mechanistic Insights Enable Divergent Product Selectivity in Catalyst-Controlled Photooxidative Degradation of Polystyrene. ACS Catal. 2023, 13, 10968–10975. doi: 10.1021/acscatal.3c02516
- Xu, Z.; Sun, D.; Xu, J.; Yang, R.; Russell, J.D.; Liu, G. Progress and Challenges in Polystyrene Recycling and Upcycling. ChemSusChem 2024, 17, e202400474. doi: 10.1002/cssc.202400474
- Xu, Z.; Pan, F.; Sun, M.; Xu, J.; Munyaneza, N.E.; Croft, Z.L.; Cai, G.; Liu, G. Cascade degradation and upcycling of polystyrene waste to high-value chemicals. Proc. Natl. Acad. Sci. USA 2022, 119, e2203346119. doi: 10.1073/pnas.2203346119
- Zhang, M.; Buekens, A.; Jiang, X.; Li, X. Dioxins and polyvinylchloride in combustion and fires. Waste Manag. Res. 2015, 33, 630–643. doi: 10.1177/0734242X15590651
- Yuan, J.; Wang, W.; Sun, W.; Yang, Z.; Cao, Y.; Chen, W.; Ge, X.; Qian, G.; Feng, X.; Duan, X.; et al. Poisoning effect of polyvinyl chloride on the catalytic pyrolysis of mixed plastics over zeolites. Sci. China Chem. 2024, 67, 2265–2273. doi: 10.1007/s11426-024-2111-5
- Meng, H.; Liu, J.; Xia, Y.; Hu, B.; Sun, H.; Li, J.; Lu, Q. Migration and transformation mechanism of Cl during polyvinyl chloride pyrolysis: The role of structural defects. Polym. Degrad. Stab. 2024, 224, 110750. doi: 10.1016/j.polymdegradstab.2024.110750
- Wu, J.; Papanikolaou, K.G.; Cheng, F.; Addison, B.; Cuthbertson, A.A.; Mavrikakis, M.; Huber, G.W. Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC. ACS Sustain. Chem. Eng. 2024, 12, 7402–7413. doi: 10.1021/acssuschemeng.4c00564
- Gui, B.; Qiao, Y.; Wan, D.; Liu, S.; Han, Z.; Yao, H.; Xu, M. Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc. Combust. Inst. 2013, 34, 2321–2329. doi: 10.1016/j.proci.2012.08.013
- Čolnik, M.; Kotnik, P.; Knez, Ž.; Škerget, M. Degradation of Polyvinyl Chloride (PVC) Waste with Supercritical Water. Processes 2022, 10, 1940. doi: 10.3390/pr10101940
- Svadlenak, S.; Wojcik, S.; Ogunlalu, O.; Vu, M.; Dor, M.; Boudouris, B.W.; Wildenschild, D.; Goulas, K.A. Upcycling of polyvinyl chloride to hydrocarbon waxes via dechlorination and catalytic hydrogenation. Appl. Catal. B-Environ. 2023, 338, 123065. doi: 10.1016/j.apcatb.2023.123065
- Yang, W.-T.; Xie, Y.-Y.; Xu, S.-M.; Wu, G.; Wang, Y.-Z. Upcycling of polyvinyl chloride to porous carbon for high-performance electromagnetic wave absorption materials. Chem. Eng. J. 2024, 496, 154054. doi: 10.1016/j.cej.2024.154054
- Nshizirungu, T.; Agarwal, A.; Jo, Y.T.; Rana, M.; Shin, D.; Park, J.-H. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water. J. Hazard. Mater. 2020, 393, 122367. doi: 10.1016/j.jhazmat.2020.122367
- Fagnani, D.E.; Kim, D.; Camarero, S.I.; Alfaro, J.F.; McNeil, A.J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 2023, 15, 222–229. doi: 10.1038/s41557-022-01078-w
- Feng, B.; Jing, Y.; Liu, X.; Guo, Y.; Wang, Y. Waste PVC upcycling: Transferring unmanageable Cl species into value-added Cl-containing chemicals. Appl. Catal. B-Environ. 2023, 331, 122671. doi: 10.1016/j.apcatb.2023.122671
- Jha, R.K.; Neyhouse, B.J.; Young, M.S.; Fagnani, D.E.; McNeil, A.J. Revisiting poly(vinyl chloride) reactivity in the context of chemical recycling. Chem. Sci. 2024, 15, 5802–5813. doi: 10.1039/D3SC06758K
- Kameda, T.; Ono, M.; Grause, G.; Mizoguchi, T.; Yoshioka, T. Chemical modification and dechlorination of polyvinyl chloride by substitution with thiocyanate as a nucleophile. Polym. Eng. Sci. 2010, 50, 69–75. doi: 10.1002/pen.21512
- Deliballi, Z.; Demir-Cakan, R.; Kiskan, B.; Yagci, Y. Self-Healable and Recyclable Sulfur Rich Poly(vinyl chloride) by S-S Dynamic Bonding. Macromol. Chem. Phys. 2023, 224, 2100423. doi: 10.1002/macp.202100423
- Lieberzeit, P.; Bekchanov, D.; Mukhamediev, M. Polyvinyl chloride modifications, properties, and applications: Review. Polym. Adv. Technol. 2022, 33, 1809–1820. doi: 10.1002/pat.5656
- Jabrail, F.H.; Awad, H.M.; Matlob, A.A. Dechlorination of landfill poly(vinyl chloride) waste and estimation of recovered chlorine. Polym. Polym. Compos. 2021, 29, 1273–1281. doi: 10.1177/09673911211037508
- Glas, D.; Hulsbosch, J.; Dubois, P.; Binnemans, K.; De Vos, D.E. End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids. ChemSusChem 2014, 7, 610–617. doi: 10.1002/cssc.201300970
- Oster, K.; Tedstone, A.; Greer, A.J.; Budgen, N.; Garforth, A.; Hardacre, C. Dehydrochlorination of PVC in multi-layered blisterpacks using ionic liquids. Green Chem. 2020, 22, 5132–5142. doi: 10.1039/D0GC01312A
- Park, E.J.; Park, B.C.; Kim, Y.J.; Canlier, A.; Hwang, T.S. Elimination and Substitution Compete During Amination of Poly(vinyl chloride) with Ehtylenediamine: XPS Analysis and Approach of Active Site Index. Macromol. Res. 2018, 26, 913–923. doi: 10.1007/s13233-018-6123-z
- Kameda, T.; Fukuda, Y.; Grause, G.; Yoshioka, T. Effect of the nucleophilicity and solvent on the chemical modification of flexible poly(vinyl chloride) by substitution. Polym. Eng. Sci. 2011, 51, 1108–1115. doi: 10.1002/pen.21693
- Ling, M.; Ma, D.; Hu, X.; Liu, Z.; Wang, D.; Feng, Q. Hydrothermal treatment of polyvinyl chloride: Reactors, dechlorination chemistry, application, and challenges. Chemosphere 2023, 316, 137718. doi: 10.1016/j.chemosphere.2022.137718
- Xiu, F.-R.; Yu, X.; Qi, Y. A high-efficiency and low-temperature subcritical water dechlorination strategy of polyvinyl chloride using coal fly ash (CFA) and coal gangue (CG) as enhancers. J. Cleaner Prod. 2020, 260, 121085. doi: 10.1016/j.jclepro.2020.121085
- Xiu, F.-R.; Yang, R.; Qi, Y.; Zhou, K.; Wang, J.; Shao, W.; Zhou, H.; Zhan, L. High-efficiency promotion on dechlorination of polyvinyl chloride in subcritical water treatment by introducing waste concrete. Process Saf. Environ. Protect. 2023, 174, 1056–1064. doi: 10.1016/j.psep.2023.05.020
- Song, J.; Wang, J.; Sima, J.; Zhu, Y.; Du, X.; Williams, P.T.; Huang, Q. Dechlorination of waste polyvinyl chloride (PVC) through non-thermal plasma. Chemosphere 2023, 338, 139535. doi: 10.1016/j.chemosphere.2023.139535
- Zhang, Z.; Wang, J.; Ge, X.; Wang, S.; Li, A.; Li, R.; Shen, J.; Liang, X.; Gan, T.; Han, X.; et al. Mixed Plastics Wastes Upcycling with High-Stability Single-Atom Ru Catalyst. J. Am. Chem. Soc. 2023, 145, 22836–22844. doi: 10.1021/jacs.3c09338
- Zheng, K.; Wu, Y.; Hu, Z.; Wang, S.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. 2023, 52, 8–29. doi: 10.1039/D2CS00688J
- Li, M.; Zhang, S. Tandem Chemical Depolymerization and Photoreforming of Waste PET Plastic to High-Value-Added Chemicals. ACS Catal. 2024, 14, 2949–2958. doi: 10.1021/acscatal.3c05535
- Jerdy, A.C.; Pham, T.; González-Borja, M.Á.; Atallah, P.; Soules, D.; Abbott, R.; Lobban, L.; Crossley, S. Impact of the presence of common polymer additives in thermal and catalytic polyethylene decomposition. Appl. Catal. B-Environ. 2023, 325, 122348. doi: 10.1016/j.apcatb.2022.122348
- Qiu, Z.; Lin, S.; Chen, Z.; Chen, A.; Zhou, Y.; Cao, X.; Wang, Y.; Lin, B.-L. A reusable, impurity-tolerant and noble metal–free catalyst for hydrocracking of waste polyolefins. Sci. Adv. 2023, 9, eadg5332. doi: 10.1126/sciadv.adg5332
- Hubáček, J.; Lederer, J.; Kuráň, P.; Koutník, P.; Gholami, Z.; Zbuzek, M.; Bačiak, M. Dechlorination during pyrolysis of plastics: The potential of stepwise pyrolysis in combination with metal sorbents. Fuel Process. Technol. 2022, 231, 107226. doi: 10.1016/j.fuproc.2022.107226
- Oasmaa, A.; Qureshi, M.S.; Pihkola, H.; Ruohomäki, I.; Raitila, J.; Lindfors, C.; Mannila, J.; Zu Castell-Rudenhausen, M.; Deviatkin, I.; Korpijärvi, K. Fast Pyrolysis of Industrial Waste Residues to Liquid Intermediates—Experimental and Conceptual Study; VTT Technical Research Centre of Finland: Espoo, Finland, 2019; Volume 44, p. VTT-R-512-19.