Downloads

Additional Files

Ruan, C., Gao, H., Zhao, X., Hua, Z., Lv, S., Chen, S., & Li, L. Ba-mediated Pt/TiO2 for Enhanced Low Temperature HCHO Oxidation: the Role of Pt Precursor. Science for Energy and Environment. 2025, 2(1), 2. doi: https://doi.org/10.53941/see.2025.100002

Article

Ba-mediated Pt/TiO2 for Enhanced Low Temperature HCHO Oxidation Originated from the Interaction between Pt and Ba

Chenxuanzhi Ruan 1,2, Hongguo Gao 1, Xuejuan Zhao 2, Zelin Hua 1, Shenjie Lv 1, Shanshan Chen 3,*, and Licheng Li 1,*

1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

2 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China

3 School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

* Correspondence: sschen@nankai.edu.cn (S.C.); lilc@njfu.edu.cn (L.L.)

Received: 22 January 2025; Revised: 27 February 2025; Accepted: 10 March 2025; Published: 11 March 2025

Abstract: The alkaline earth metals have recently been reported to exhibit a similar role as alkali metals in enhancing the low temperature formaldehyde (HCHO) oxidation performance of precious metal supported catalysts; however, its essential mechanism is still not well understood. In this work, it is found that the Pt precursor is critical for Ba-mediated Pt/TiO2 catalyst to achieve the efficient HCHO oxidation performance. Catalytic results indicate that Pt/TiO2 catalysts using tetraammineplatinum(II) nitrate (Pt(NH3)4(NO3)2) and chloroplatinic acid (H2PtCl6) as Pt precursors exhibit comparable performance in HCHO oxidation. Notably, the Ba-mediated Pt/TiO2 catalyst synthesized from Pt(NH3)4(NO3)2 shows exceptional catalytic performance, with its HCHO reaction rate being 3.8-fold that of Pt/TiO2, while the Ba-mediated Pt/TiO2 catalyst derived from H2PtCl6 has the similar catalytic activity to that of Pt/TiO2. Series characterization results reveal that the Ba species can strongly interact with Pt to form the Ba-O-Pt active site within the Ba-mediated Pt/TiO2 catalyst derived from Pt(NH3)4(NO3). However, such interaction is not observed in the catalyst synthesized from H2PtCl6. Additionally, more oxygen species and hydroxyl groups can be adsorbed and activated on the Ba-O-Pt active site than those on the typical Pt active site, and HCHO undergoes efficient oxidation on the Ba-O-Pt active site via a different reaction pathway (HCHO→HCOO + OH→H2O + CO2) analogous to that observed on alkali metal-mediated active site. These findings can provide a deep insight into the development of highly efficient catalysts for low temperature HCHO oxidation.

Keywords:

barium platinum precursor formaldehyde catalytic oxidation active site

References

  1. Guo, J.; Lin, C.; Jiang, C.; Zhang, P. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. Appl. Surf. Sci. 2019, 475, 237–255. doi: 10.1016/j.apsusc.2018.12.238
  2. Miao, L.; Wang, J.; Zhang, P. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl. Surf. Sci. 2019, 466, 441–453. doi: 10.1016/j.apsusc.2018.10.031
  3. Zhang, Z.; He, G.; Li, Y.; Zhang, C.; Ma, J.; He, H. Effect of hydroxyl groups on metal anchoring and formaldehyde oxidation performance of Pt/Al2O3. Environ. Sci. Technol. 2022, 56, 10916–10924. doi: 10.1021/acs.est.2c01278
  4. Ahmad, W.; Jeong, H.; Nahm, H.; Lee, Y.; Park, E.; Lee, H.; Ali, G.; Kim, Y.; Jurng, J.; Oh, Y. Metal-anchoring, metal oxidation-resistance, and electron transfer behavior of oxygen vacancy-rich TiO2 in supported noble metal catalyst for room temperature HCHO conversion. Chem. Eng. J. 2023, 467, 143412. doi: 10.1016/j.cej.2023.143412
  5. Wang, C.; Li, Y.; Zheng, L.; Zhang, C.; Wang, Y.; Shan, W.; Liu, F.; He, H. A nonoxide catalyst system study: Alkali metal-promoted Pt/AC catalyst for formaldehyde oxidation at ambient temperature. ACS Catal. 2020, 11, 456–465. doi: 10.1021/acscatal.0c03196
  6. Chen, D.; Zhang, G.; Wang, M.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Pt/MnO2 nanoflowers anchored to boron nitride aerogels for highly efficient enrichment and catalytic oxidation of formaldehyde at room temperature. Angew. Chem. Int. Ed. 2021, 60, 6377–6381. doi: 10.1002/anie.202013667
  7. Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew. Chem. Int. Ed. 2012, 51, 9628–9632. doi: 10.1002/anie.201202034
  8. Li, Y.; Zhang, C.; He, H.; Zhang, J.; Chen, M. Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature. Catal. Sci. Technol. 2016, 6, 2289–2295. doi: 10.1039/C5CY01521A
  9. Wang, J.; He, G.; Wang, C.; Chen, X.; Liu, X.; Li, Y.; Shan, W.; He, H. HCHO oxidation on Pt-Na/SiO2 catalyst with ultralow Pt loading: New insight into the effect of Si support and Na promoter. Appl. Catal. B Environ. 2024, 347, 123787. doi: 10.1016/j.apcatb.2024.123787
  10. Zhao, H.; Tang, B.; Tang, J.; Cai, Y.; Cui, Y.; Liu, H.; Wang, L.; Wang, Y.; Zhan, W.; Guo, Y. et al. Ambient temperature formaldehyde oxidation on the Pt/Na-ZSM-5 catalyst: Tuning adsorption capacity and the Pt chemical state. Ind. Eng. Chem. Res. 2021, 60, 7132–7144. doi: 10.1021/acs.iecr.1c00732
  11. Xiang, N.; Hou, Y.; Han, X.; Li, Y.; Guo, Y.; Liu, Y.; Huang, Z. Promoting effect and mechanism of alkali Na on Pd/SBA-15 for room temperature formaldehyde catalytic oxidation. ChemCatChem 2019, 11, 5098–5107. doi: 10.1002/cctc.201901039
  12. Panagiotopoulou, P.; Kondarides, D. Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Appl. Catal. B Environ. 2011, 101, 738–746. doi: 10.1016/j.apcatb.2010.11.016
  13. Bauer, H.; Thum, K.; Alonso, M.; Fischer, C.; Harder, S. Alkene transfer hydrogenation with alkaline-earth metal catalysts. Angew. Chem. Int. Ed. 2019, 58, 4248–4253. doi: 10.1002/anie.201813910
  14. Fan, J.; Chen, L.; Li, S.; Mou, J.; Zeng, L.; Jiao, Y.; Wang, J.; Chen, Y. Insights into the promotional effect of alkaline earth metals in Pt-based three-way catalysts for NO reduction. J. Catal. 2023, 418, 90–99. doi: 10.1016/j.jcat.2023.01.009
  15. Auvray, X.; Lindholm, A.; Milh, M.; Olsson, L. The addition of alkali and alkaline earth metals to Pd/Al2O3 to promote methane combustion. Effect of Pd and Ca loading. Catal. Today 2018, 299, 212–218. doi: 10.1016/j.cattod.2017.05.066
  16. Zhang, Z.; Ou, Z.; Qin, C.; Ran, J.; Wu, C. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts. Fuel 2019, 257, 116032. doi: 10.1016/j.fuel.2019.116032
  17. Xu, A.; Hung, S.; Cao, A.; Wang, Z.; Karmodak, N.; Huang, J.; Yan, Y.; Sedighian Rasouli, A.; Ozden, A.; Wu, F. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 2022, 5, 1081–1088. doi: 10.1038/s41929-022-00880-6
  18. Mai, J.; Maurer, J.; Langer, J.; Harder, S. Heterobimetallic alkaline earth metal–metal bonding. Nat. Synth. 2024, 3, 368–377. doi: 10.1038/s44160-023-00451-y
  19. Liu, K.; Xu, X.; Xu, J.; Fang, X.; Liu, L.; Wang, X. The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation. J. CO2 Util. 2020, 38, 113–124. doi: 10.1016/j.jcou.2020.01.016
  20. Solís, R.; Bedia, J.; Rodríguez, J.; Belver, C. A review on alkaline earth metal titanates for applications in photocatalytic water purification. Chem. Eng. J. 2021, 409, 128110. doi: 10.1016/j.cej.2020.128110
  21. Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A.; Peng, G.; Herron, J.; Bell, D.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633–1636. doi: 10.1126/science.1192449
  22. Chen, X.; Qin, Q.; Wang, J.; Wen, W.; Liu, X.; Wang, C.; Zhou, L.; Deng, H.; Li, Y. Strong interaction between promoter and metal in Pd-Ba/TiO2 catalysts for formaldehyde oxidation. J. Colloid Interf. Sci. 2025, 678, 520–531. doi: 10.1016/j.jcis.2024.08.166
  23. Huang, H.; Leung, D. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. J. Catal. 2011, 280, 60–67. doi: 10.1016/j.jcat.2011.03.003
  24. Li, L.; Li, L.; Wang, L.; Zhao, X.; Hua, Z.; Chen, Y.; Li, X.; Gu, X. Enhanced catalytic decomposition of formaldehyde in low temperature and dry environment over silicate-decorated titania supported sodium-stabilized platinum catalyst. Appl. Catal. B Environ. 2020, 277, 119–216. doi: 10.1016/j.apcatb.2020.119216
  25. Zhao, H.; Tang, J.; Li, Z.; Yang, J.; Liu, H.; Wang, L.; Cui, Y.; Zhan, W.; Guo, Y.; Guo, Y. Nickel oxide regulating surface oxygen to promote formaldehyde oxidation on manganese oxide catalysts. Catal. Sci. Technol. 2021, 11, 7110–7124. doi: 10.1039/D1CY01490K
  26. Bu, Y.; Chen, Y.; Jiang, G.; Hou, X.; Li, S.; Zhang, Z. Understanding of Au-CeO2 interface and its role in catalytic oxidation of formaldehyde. Appl. Catal. B Environ. 2020, 260, 118138. doi: 10.1016/j.apcatb.2019.118138
  27. Wang, L.; Yue, H.; Hua, Z.; Wang, H.; Li, X.; Li, L. Highly active Pt/NaxTiO2 catalyst for low temperature formaldehyde decomposition. Appl. Catal. B Environ. 2017, 219, 301–313. doi: 10.1016/j.apcatb.2017.07.073
  28. Li, Y.; Zhang, C.; He, H. Significant enhancement in activity of Pd/TiO2 catalyst for formaldehyde oxidation by Na addition. Catal. Today 2017, 281, 412–417. doi: 10.1016/j.cattod.2016.05.037
  29. Bai, B.; Li, J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal. 2014, 4, 2753–2762. doi: 10.1021/cs5006663
  30. Song, S.; Wu, X.; Lu, C.; Wen, M.; Le, Z.; Jiang, S. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature. Appl. Surf. Sci. 2018, 422, 195–203. doi: 10.1016/j.apsusc.2018.02.121
  31. Lv, S.; Hua, Z.; Ma, N.; Guo, Z.; Shi, K.; Wei, T.; Li, L.; Li, L. High-pressure steam treatment with Pt/TiO2 enhances the low temperature formaldehyde oxidation performance. Appl. Surf. Sci. 2023, 620, 156815. doi: 10.1016/j.apsusc.2023.156815
  32. Ohwada, K.; Machida, A. Observation of ferroelectric domains in BaTiO3 by synchrotron radiation X-ray diffraction topography. Jpn. J. Appl. Phys. 2024, 63, 09SP15. doi: 10.35848/1347-4065/ad6e93
  33. Bazeera, A.; Amrin, M. Synthesis and characterization of barium oxide nanoparticles. IOSR J. Appl. Phys 2017, 1, 76–80. doi: 10.9790/4861-17002017680
  34. Wei, T.; Zhao, X.; Li, L.; Wang, L.; Lv, S.; Gao, L.; Yuan, G.; Li, L. Enhanced formaldehyde oxidation performance of the mesoporous TiO2(B)-supported Pt catalyst: The role of hydroxyls. ACS Omega 2022, 7, 25491–25501. doi: 10.1021/acsomega.2c02490
  35. Zeinalipour-Yazdi, C.; Cooksy, A.; Efstathiou, A. CO adsorption on transition metal clusters: Trends from density functional theory. Surf. Sci. 2008, 602, 1858–1862. doi: 10.1016/j.susc.2008.03.024
  36. Motin, A.; Haunold, T.; Bukhtiyarov, A.; Bera, A.; Rameshan, C.; Rupprechter, G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies. Appl. Surf. Sci. 2018, 440, 680–687. doi: 10.1016/j.apsusc.2018.01.148
  37. Vovk, E.; Kalinkin, A.; Smirnov, M.; Klembovskii, I.; Bukhtiyarov, V. XPS study of stability and reactivity of oxidized Pt nanoparticles supported on TiO2. J. Phys. Chem. C 2017, 121, 17297–17304. doi: 10.1021/acs.jpcc.7b04569
  38. Pandian, S.; Sivakumar, M.; Kandasamy, M.; Suresh, S.; Latha, G.; Srinivasan, S.; Ananth, K. Barium titanate nanorods/nanoparticles embedded reduced graphene oxide nanocomposite photoanode for dye-sensitized solar cell. Chem. Phys. Lett. 2024, 851, 141491. doi: 10.1016/j.cplett.2024.141491
  39. Zhang, C.; Li, Y.; Wang, Y.; He, H. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ. Sci. Technol. 2014, 48, 5816–5822. doi: 10.1021/es4056627
  40. Jardim, E.; Rico-Francés, S.; Coloma, F.; Anderson, J.; Silvestre-Albero, J.; Sepúlveda-Escribano, A. Influence of the metal precursor on the catalytic behavior of Pt/Ceria catalysts in the preferential oxidation of CO in the presence of H2(PROX). J. Colloid Interf. Sci. 2015, 443, 45–55. doi: 10.1016/j.jcis.2014.12.013
  41. Baltrusaitis, J.; Jayaweera, P.; Grassian, V. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 2009, 11, 8295–8305. doi: 10.1039/b907584d
  42. Teske, M.; Lange, H.; Wulf, K.; Senz, V.; Grabow, N.; Eickner, T.; Oschatz, S. Chemical characterization of plasma polymerized allylamine coatings with addition of ammonia and oxygen by XPS. Curr. Direct. Biomed. Eng. 2022, 8, 664–667. doi: 10.1515/cdbme-2022-1169
  43. Ueda, Y.; Morisada, S.; Kawakita, H.; Wenzel, M.; Weigand, J.; Ohto, K. Effective extraction of Pt (IV) as [PtCl6]2− from hydrochloric acid using a simple urea extractant. Sep. Purif. 2021, 277, 119456. doi: 10.1016/j.seppur.2021.119456
  44. Li, Y.; Hou, Z.; Xiao, Z.; Lu, C.; Jin, J.; He, Y.; Jia, J.; Suntharalingam, K. Modulating the Anticancer Activity of Square-Planar Platinum (II) Complex by Its Chelated Diphosphine. Appl. Organomet. Chem. 2025, 39, e7803. doi: 10.1002/aoc.7803
  45. Ardianrama, A.; Pradyasti, A.; Woo, H.; Kim, M. Colorimetric sensing of barium ion in water based on polyelectrolyte-induced chemical etching of silver nanoprisms. Dyes Pigm. 2020, 181, 108578. doi: 10.1016/j.dyepig.2020.108578
  46. Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Anderson, J.; Rodríguez-Reinoso, F. Spectroscopic and microcalorimetric study of a TiO2-supported platinum catalyst. Phys. Chem. Chem. Phys. 2009, 11, 917–920. doi: 10.1039/B816601C
  47. He, M.; Ji, J.; Liu, B.; Huang, H. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature. Appl. Surf. Sci. 2019, 473, 934–942. doi: 10.1016/j.apsusc.2018.12.212
  48. Li, L.; Wang, L.; Zhao, X.; Wei, T.; Wang, H.; Li, X.; Gu, X.; Yan, N.; Li, L.; Xiao, H. Excellent low-temperature formaldehyde decomposition performance over Pt nanoparticles directly loaded on cellulose triacetate. Ind. Eng. Chem. Res. 2020, 59, 21720–21728. doi: 10.1021/acs.iecr.0c04568
  49. Zhang, C.; He, H.; Tanaka, K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal. B Environ. 2006, 65, 37–43. doi: 10.1016/j.apcatb.2005.12.010
  50. Li, Y.; Chen, X.; Wang, C.; Zhang, C.; He, H. Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature. ACS Catal. 2018, 8, 11377–11385. doi: 10.1021/acscatal.8b03026
  51. Chen, X.; He, G.; Li, Y.; Chen, M.; Qin, X.; Zhang, C.; He, H. Identification of a facile pathway for dioxymethylene conversion to formate catalyzed by surface hydroxyl on TiO2-based catalyst. ACS Catal. 2020, 10, 9706–9715. doi: 10.1021/acscatal.0c01901