Downloads

Additional Files

Jian, N., Ge, H., Ma, Y., Zhang, Y., Li, L., Liu, J., Yu, J., Li, C., & Li, J. Improved Methanol-to-Formate Electrocatalytic Reaction by Engineering of Nickel Hydroxide and Iron Oxyhydroxide Heterostructures. Science for Energy and Environment. 2025, 2(1), 3. doi: https://doi.org/10.53941/see.2025.100003

Article

Improved Methanol-to-Formate Electrocatalytic Reaction by Engineering of Nickel Hydroxide and Iron Oxyhydroxide Heterostructures

Ning Jian 1,2, Huan Ge 1,2, Yi Ma 1,2, Yong Zhang 1,2, Luming Li 1,2, Junfeng Liu 3, Jing Yu 4, Canhuang Li 4, and Junshan Li 1,2,*

1 School of Mechanic Engineering, Chengdu University, Chengdu 610106, China

2 Institute for Advanced Study, Chengdu University, Chengdu 610106, China

3 Institute for Energy Research, Jiangsu University, Jiangsu 212013, China

4 Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Spain

* Correspondence: lijunshan@cdu.edu.cn

Received: 8 March 2025; Revised: 21 March 2025; Accepted: 25 March 2025; Published: 27 March 2025

Abstract: Electrocatalytic methanol oxidation reaction (MOR) holds significant value in the chemical industry, as it enables the treatment of methanol-containing wastewater and promotes hydrogen production from water. This study investigates a strategy based on tuning-composition of metal elements to optimize MOR performance, aiming to outperform the current cost-effective and efficient catalysts. To this end, nickel hydroxide and iron oxyhydroxide heterostructures were synthesized through a facile hydrothermal routine, and the catalytic performance of three different Ni/Fe ratios in MOR was examined in alkaline media. Among them, the material with equal Ni/Fe ratio exhibited the best catalytic activity, maintaining a high current density of ~66 mA cm−2 at 1.5 V vs. RHE in 1 M KOH electrolyte with 1 M methanol. Moreover, this developed electrode showed a Faradaic efficiency (FE) of 98.5% for formate production within a continuous 12 h test. Furthermore, density function theory (DFT) calculation was applied to unravel the methanol-to-formate conversion mechanism that was enhanced by the proper Ni/Fe ratio. These results demonstrate the high efficiency and selectivity of efficient methanol-to-formate conversion on NiFe-based materials, providing a promising a non-precious catalyst for electrocatalytic upgrading methanol to value-added formate.

Keywords:

electrocatalysis methanol oxidation reaction formate production hydrogen evolution reaction electrocatalytic upgrading

References

  1. Campos-Seijo, B. Carbon-Neutrality Goals. C&EN Glob. Enterp. 2020, 98, 4. https://doi.org/10.1021/cen-09840-editorial.
  2. Liu, C.; Li, F.; Lai-Peng, M.; Cheng, H.M. Advanced Materials for Energy Storage. Adv. Mater. 2010, 22, E28–E62. https://doi.org/10.1002/adma.200903328.
  3. Yadav, V.G.; Yadav, G.D.; Patankar, S.C. The Production of Fuels and Chemicals in the New World: Critical Analysis of the Choice between Crude Oil and Biomass Vis-à-Vis Sustainability and the Environment. Clean Technol. Environ. Policy 2020, 22, 1757–1774. https://doi.org/10.1007/s10098-020-01945-5.
  4. Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. https://doi.org/10.1126/science.1103197.
  5. Wang, P.; Zhang, R.; Wang, K.; Liu, Y.; Zhang, L.; Wang, X.; Li, H.; He, Y.; Liu, Z. Simultaneously Constructing Asymmetrically Coordinated Cobalt Single Atoms and Cobalt Nanoclusters via a Fresh Potassium Hydroxide Clipping Strategy toward Efficient Alkaline Oxygen Reduction Reaction. Energy Mater. Adv. 2023, 4, 0042. https://doi.org/10.34133/energymatadv.0042.
  6. Moges, E.A.; Lakshmanan, K.; Chang, C.Y.; Liao, W.S.; Angerasa, F.T.; Dilebo, W.B.; Edao, H.G.; Tadele, K.T.; Alemayehu, D.D.; Bejena, B.D.; et al. Materials of Value-Added Electrolysis for Green Hydrogen Production. ACS Mater. Lett. 2024, 6, 4932–4954. https://doi.org/10.1021/acsmaterialslett.4c01173.
  7. Moges, E.A.; Chang, C.Y.; Tsai, M.C.; Su, W.N.; Hwang, B.J. Electrocatalysts for Value-Added Electrolysis Coupled with Hydrogen Evolution. EES Catal. 2023, 1, 413–433. https://doi.org/10.1039/d3ey00017f.
  8. McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. https://doi.org/10.1021/ja510442p.
  9. Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and Fuels from Electrochemical Interfaces. Nat. Mater. 2016, 16, 57–69. https://doi.org/10.1038/nmat4738.
  10. Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J.L.; Fu, X.Z. Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610. https://doi.org/10.1002/adfm.201909610.
  11. Li, J.; Li, L.; Wang, J.; Cabot, A.; Zhu, Y. Boosting Hydrogen Evolution by Methanol Oxidation Reaction on Ni-Based Electrocatalysts: From Fundamental Electrochemistry to Perspectives. ACS Energy Lett. 2024, 9, 853–879. https://doi.org/10.1021/acsenergylett.3c02678.
  12. Ren, J.; Zhang, Y.; Li, J.; Liu, J.; Hu, J.; Li, C.; Ke, Y.; Zhao, J.; Cabot, A.; Tang, B. Hydrothermal Nickel Selenides as Efficient Electrodes in Alkaline Media: Application to Supercapacitors and Methanol Oxidation Reaction. Dalt. Trans. 2024, 53, 18736–18744. https://doi.org/10.1039/D4DT02472A.
  13. Ma, Y.; Li, L.; Tang, J.; Hu, Z.; Zhang, Y.; Ge, H.; Jian, N.; Zhao, J.; Cabot, A.; Li, J. Electrochemical PET Recycling to Formate through Ethylene Glycol Oxidation on Ni-Co-S Nanosheet Arrays. J. Mater. Chem. A 2024, 12, 33917–33925. https://doi.org/10.1039/d4ta07156e.
  14. Zhang, Y.; Liu, R.; Ma, Y.; Jian, N.; Pan, H.; Liu, Y.; Deng, J.; Li, L.; Shao, Q.; Li, C.; et al. Nickel-Cobalt Oxide Nanoparticles as Superior Electrocatalysts for Enhanced Coupling Hydrogen Evolution and Selective Ethanol Oxidation Reaction. J. Mater. Chem. A 2024, 12, 17252–17259. https://doi.org/10.1039/d4ta03259d.
  15. Kakati, N.; Maiti, J.; Lee, S.H.; Jee, S.H.; Viswanathan, B.; Yoon, Y.S. Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397–12429. https://doi.org/10.1021/cr400389f.
  16. Wu, D.; Hao, J.; Song, Z.; Fu, X.Z.; Luo, J.L. All Roads Lead to Rome: An Energy-Saving Integrated Electrocatalytic CO2 Reduction System for Concurrent Value-Added Formate Production. Chem. Eng. J. 2020, 412, 127893. https://doi.org/10.1016/j.cej.2020.127893.
  17. Liu, Y.P.; Zhao, S.F.; Guo, S.X.; Bond, A.M.; Zhang, J.; Zhu, G.; Hill, C.L.; Geletii, Y.V. Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−. J. Am. Chem. Soc. 2016, 138, 2617–2628. https://doi.org/10.1021/jacs.5b11408.
  18. Zhang, Y.; Liu, R.; Ma, Y.; Jian, N.; Ge, H.; Pan, H.; Zhang, Y.; Zhang, C.; Liu, Y.; Deng, J.; et al. Surface Selenium Coating Promotes Selective Methanol-to-Formate Electrooxidation on Ni3Se4 Nanoparticles. Inorg. Chem. 2024, 63, 23328–23337. https://doi.org/10.1021/acs.inorgchem.4c03996.
  19. Yi, Y.; Li, J.; Cui, C. Trimetallic FeCoNi Disulfide Nanosheets for CO2-Emission-Free Methanol Conversion. Chinese Chem. Lett. 2022, 33, 1006–1010. https://doi.org/10.1016/j.cclet.2021.07.005.
  20. Liu, J.; Li, T.; Wang, Q.; Liu, H.; Wu, J.; Sui, Y.; Li, H.; Tang, P.; Wang, Y. Bifunctional PdMoPt Trimetallene Boosts Alcohol-Water Electrolysis. Chem. Sci. 2024, 15, 16660–16668. https://doi.org/10.1039/d4sc04764h.
  21. Liu, H.; Li, T.; Wu, Z.; Xu, H.; Li, H.; Jing, R.; Wang, Y.; Liu, J. Integration of Phosphorus in PdCr Metallene for Enhanced CO-Tolerant Alcohol Electrooxidation. Inorg. Chem. 2024, 64, 123–132. https://doi.org/10.1021/acs.inorgchem.4c04334.
  22. Liu, J.; Liu, H.; Wang, Q.; Li, T.; Yang, T.; Zhang, W.; Xu, H.; Li, H.; Qi, X.; Wang, Y.; et al. Phosphorus Doped PdMo Bimetallene as a Superior Bifunctional Fuel Cell Electrocatalyst. Chem. Eng. J. 2024, 486, 150258. https://doi.org/10.1016/j.cej.2024.150258.
  23. Liu, J.; Wang, Q.; Li, T.; Wang, Y.; Li, H.; Cabot, A. PdMoSb Trimetallene as High-Performance Alcohol Oxidation Electrocatalyst. Nano Res. 2023, 16, 2041–2048. https://doi.org/10.1007/s12274-022-4873-8.
  24. Zhou, J.; Yuan, L.; Wang, J.; Song, L.; You, Y.; Zhou, R.; Zhang, J.; Xu, J. Combinational Modulations of NiSe2 Nanodendrites by Phase Engineering and Iron-Doping towards an Efficient Oxygen Evolution Reaction. J. Mater. Chem. A 2020, 8, 8113–8120. https://doi.org/10.1039/d0ta00860e.
  25. Chen, D.; Minteer, S.D. Mechanistic Study of Nickel Based Catalysts for Oxygen Evolution and Methanol Oxidation in Alkaline Medium. J. Power Sources 2015, 284, 27–37. https://doi.org/10.1016/j.jpowsour.2015.02.143.
  26. Zhang, M.; Zhu, J.; Wan, R.; Liu, B.; Zhang, D.; Zhang, C.; Wang, J.; Niu, J. Synergistic Effect of Nickel Oxyhydroxide and Tungsten Carbide in Electrocatalytic Alcohol Oxidation. Chem. Mater. 2022, 34, 959–969. https://doi.org/10.1021/acs.chemmater.1c02535.
  27. Kowal, A.; Port, S.N.; Nichols, R.J. Nickel Hydroxide Electrocatalysts for Alcohol Oxidation Reactions: An Evaluation by Infrared Spectroscopy and Electrochemical Methods. Catal. Today 1997, 38, 483–492. https://doi.org/10.1016/S0920-5861(97)00049-7.
  28. Bender, M.T.; Lam, Y.C.; Hammes-Schiffer, S.; Choi, K.S. Unraveling Two Pathways for Electrochemical Alcohol and Aldehyde Oxidation on NiOOH. J. Am. Chem. Soc. 2021, 142, 21538–21547. https://doi.org/10.1021/jacs.0c10924.
  29. Wang, T.J.; Huang, H.; Wu, X.R.; Yao, H.C.; Li, F.M.; Chen, P.; Jin, P.J.; Deng, Z.W.; Chen, Y. Selflate Synthesis of Defect-Rich NiO Nanotubes as Efficient Electrocatalysts for Methanol Oxidation Reaction. Nanoscale 2019, 11, 19783–19790. https://doi.org/10.1039/c9nr06304h.
  30. Xu, Y.; Liu, M.; Wang, M.; Ren, T.; Ren, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Methanol Electroreforming Coupled to Green Hydrogen Production over Bifunctional NiIr-Based Metal-Organic Framework Nanosheet Arrays. Appl. Catal. B Environ. 2022, 300, 120753. https://doi.org/10.1016/j.apcatb.2021.120753.
  31. Li, J.; Ma, Y.; Yu, J.; Li, L.; Yang, H.; Gu, W.; Shi, J.; Wang, J.; Zhu, Y. Enhanced Methanol Electrooxidation and Supercapacitive Performance via Compositional Engineering of Colloidal Ni-Co Alloying Nanoparticles. ChemSusChem 2024, 18, e202401098. https://doi.org/10.1002/cssc.202401098.
  32. Ma, Y.; Li, L.; Zhang, Y.; Jian, N.; Pan, H.; Deng, J.; Li, J. Nickel Foam Supported Mn-Doped NiFe-LDH Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Methanol Oxidation and Hydrogen Evolution. J. Colloid Interface Sci. 2024, 663, 971–980. https://doi.org/10.1016/j.jcis.2024.02.191.
  33. Li, J.; Xing, C.; Zhang, Y.; Zhang, T.; Spadaro, M.C.; Wu, Q.; Yi, Y.; He, S.; Llorca, J.; Arbiol, J.; et al. Nickel Iron Diselenide for Highly Efficient and Selective Electrocatalytic Conversion of Methanol to Formate. Small 2021, 17, 2006623. https://doi.org/10.1002/smll.202006623.
  34. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
  35. Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B-Condens. Matter Mater. Phys. 1996, 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.
  36. Meng, F.; Wu, Q.; Elouarzaki, K.; Luo, S.; Sun, Y.; Dai, C.; Xi, S.; Chen, Y.; Lin, X.; Fang, M.; et al. Essential Role of Lattice Oxygen in Methanol Electrochemical Refinery toward Formate. Sci. Adv. 2023, 9, eadh9487. https://doi.org/10.1126/sciadv.adh9487.
  37. Zhou, H.; Ren, Y.; Li, Z.; Xu, M.; Wang, Y.; Ge, R.; Kong, X.; Zheng, L.; Duan, H. Electrocatalytic Upcycling of Polyethylene Terephthalate to Commodity Chemicals and H2 Fuel. Nat. Commun. 2021, 12, 4679. https://doi.org/10.1038/s41467-021-25048-x.
  38. Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.J.; Sokaras, D.; Weng, T.C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. https://doi.org/10.1021/ja511559d.
  39. Feng, X.; Liu, B.W.; Guo, K.X.; Fan, L.F.; Wang, G.X.; Ci, S.Q.; Wen, Z.H. Anodic Electrocatalysis of Glycerol Oxidation for Hybrid Alkali/Acid Electrolytic Hydrogen Generation. J. Electrochem. 2023, 29, 1–10. https://doi.org/10.13208/j.electrochem.2215005.
  40. Chen, J.; Wang, K.; Liu, Z.; Sun, X.; Zhang, X.; Lei, F.; Wan, X.; Xie, J.; Tang, B. Sulfurization-Induced Lattice Disordering in High-Entropy Catalyst for Promoted Bifunctional Electro-Oxidation Behavior. Chem. Eng. J. 2024, 489, 151234. https://doi.org/10.1016/j.cej.2024.151234.
  41. Li, J.; Yu, J.; Zhang, Y.; Li, C.; Ma, Y.; Ge, H.; Jian, N.; Li, L.; Zhang, C.Y.; Zhou, J.Y.; et al. Boosting Polysulfide Conversion on Fe-Doped Nickel Diselenide Toward Robust Lithium–Sulfur Batteries. Adv. Funct. Mater. 2025, 2501485. https://doi.org/10.1002/ADFM.202501485.
  42. Li, H.H.; Xie, M.L.; Cui, C.H.; He, D.; Gong, M.; Jiang, J.; Zheng, Y.R.; Chen, G.; Lei, Y.; Yu, S.H. Surface Charge Polarization at the Interface: Enhancing the Oxygen Reduction via Precise Synthesis of Heterogeneous Ultrathin Pt/PtTe Nanowire. Chem. Mater. 2016, 28, 8890–8898. https://doi.org/10.1021/acs.chemmater.6b02769.
  43. Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. https://doi.org/10.1021/ja502379c.
  44. Phan, V.T.T.; Nguyen, Q.P.; Wang, B.; Burgess, I.J. Oxygen Vacancies Alter Methanol Oxidation Pathways on NiOOH. J. Am. Chem. Soc. 2024, 146, 4830–4841. https://doi.org/10.1021/jacs.3c13222.
  45. Zhao, B.; Liu, J.; Xu, C.; Feng, R.; Sui, P.; Luo, J.X.; Wang, L.; Zhang, J.; Luo, J.L.; Fu, X.Z. Interfacial Engineering of Cu2Se/Co3Se4 Multivalent Hetero-Nanocrystals for Energy-Efficient Electrocatalytic Co-Generation of Value-Added Chemicals and Hydrogen. Appl. Catal. B Environ. 2021, 285, 119800. https://doi.org/10.1016/j.apcatb.2020.119800.
  46. Zhan, C.; Bu, L.; Sun, H.; Huang, X.; Zhu, Z.; Yang, T.; Ma, H.; Li, L.; Wang, Y.; Geng, H.; et al. Medium/High-Entropy Amalgamated Core/Shell Nanoplate Achieves Efficient Formic Acid Catalysis for Direct Formic Acid Fuel Cell. Angew. Chem.-Int. Ed. 2023, 62, 1–8. https://doi.org/10.1002/anie.202213783.
  47. Cao, C.; Ma, D.D.; Jia, J.; Xu, Q.; Wu, X.T.; Zhu, Q.L. Divergent Paths, Same Goal: A Pair-Electrosynthesis Tactic for Cost-Efficient and Exclusive Formate Production by Metal–Organic-Framework-Derived 2D Electrocatalysts. Adv. Mater. 2021, 33, 2008631. https://doi.org/10.1002/adma.202008631.
  48. Deng, X.; Li, M.; Fan, Y.; Wang, L.; Fu, X.Z.; Luo, J.L. Constructing Multifunctional ‘Nanoplatelet-on-Nanoarray’ Electrocatalyst with Unprecedented Activity towards Novel Selective Organic Oxidation Reactions to Boost Hydrogen Production. Appl. Catal. B Environ. 2020, 278, 119339. https://doi.org/10.1016/j.apcatb.2020.119339.
  49. Hao, J.; Liu, J.; Wu, D.; Chen, M.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X.Z.; Luo, J.L. In Situ Facile Fabrication of Ni(OH)2 Nanosheet Arrays for Electrocatalytic Co-Production of Formate and Hydrogen from Methanol in Alkaline Solution. Appl. Catal. B Environ. 2021, 281, 119510. https://doi.org/10.1016/j.apcatb.2020.119510.
  50. Wei, C.; Sun, S.; Mandler, D.; Wang, X.; Qiao, S.Z.; Xu, Z.J. Approaches for Measuring the Surface Areas of Metal Oxide Electrocatalysts for Determining Their Intrinsic Electrocatalytic Activity. Chem. Soc. Rev. 2019, 48, 2518–2534. https://doi.org/10.1039/c8cs00848e.
  51. Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001.
  52. Zhao, B.; Liu, J.; Wang, X.; Xu, C.; Sui, P.; Feng, R.; Wang, L.; Zhang, J.; Luo, J.L.; Fu, X.Z. CO2-Emission-Free Electrocatalytic CH3OH Selective Upgrading with High Productivity at Large Current Densities for Energy Saved Hydrogen Co-Generation. Nano Energy 2021, 80, 105530. https://doi.org/10.1016/j.nanoen.2020.105530.
  53. Sun, S.N.; Dong, L.Z.; Li, J.R.; Shi, J.W.; Liu, J.; Wang, Y.R.; Huang, Q.; Lan, Y.Q. Redox-Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO2 Reduction. Angew. Chem.-Int. Ed. 2022, 61, e202207282. https://doi.org/10.1002/anie.202207282.
  54. Ganguly, S.; Paul, S.; Khurana, D.; Khan, T.S.; Giri, P.K.; Loha, C.; Ghosh, S. Ternary Ni-Co-Se Nanostructure for Electrocatalytic Oxidative Value Addition of Biomass Platform Chemicals. ACS Appl. Energy Mater. 2023, 6, 5331–5341. https://doi.org/10.1021/acsaem.3c00313.
  55. Liu, B.; Wang, X.; Wang, S.; Peng, H.Q.; Xiao, T.; Liu, G.; Bai, S.; Zhao, Y.; Zhang, W.; Song, Y.F. Hydroxyl Vacancies Triggered High Methanol Oxidation Activity of Monolayered Layered Double Hydroxides for Energy-Saving Hydrogen Production. Mater. Today Energy 2022, 28, 101082. https://doi.org/10.1016/j.mtener.2022.101082.
  56. Schimpf, A.M.; Knowles, K.E.; Carroll, G.M.; Gamelin, D.R. Electronic Doping and Redox-Potential Tuning in Colloidal Semiconductor Nanocrystals. Acc. Chem. Res. 2015, 48, 1929–1937. https://doi.org/10.1021/acs.accounts.5b00181.
  57. Si, F.; Liu, J.; Zhang, Y.; Zhao, B.; Liang, Y.; Wu, X.; Kang, X.; Yang, X.; Zhang, J.; Fu, X.Z.; et al. Surface Spin Enhanced High Stable NiCo2S4 for Energy-Saving Production of H2 from Water/Methanol Coelectrolysis at High Current Density. Small 2023, 19, 2205257. https://doi.org/10.1002/smll.202205257.
  58. Li, J.; Li, L.; Ma, X.; Han, X.; Xing, C.; Qi, X.; He, R.; Arbiol, J.; Pan, H.; Zhao, J.; et al. Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen. Adv. Sci. 2023, 10, 2300841. https://doi.org/10.1002/advs.202300841.
  59. Abdullah, M.I.; Hameed, A.; Zhang, N.; Islam, M.H.; Ma, M.; Pollet, B.G. Ultrasonically Surface-Activated Nickel Foam as a Highly Efficient Monolith Electrode for the Catalytic Oxidation of Methanol to Formate. ACS Appl. Mater. Interfaces 2021, 13, 30603–30613. https://doi.org/10.1021/acsami.1c06258.
  60. Mondal, B.; Karjule, N.; Singh, C.; Shimoni, R.; Volokh, M.; Hod, I.; Shalom, M. Unraveling the Mechanisms of Electrocatalytic Oxygenation and Dehydrogenation of Organic Molecules to Value-Added Chemicals Over a Ni–Fe Oxide Catalyst. Adv. Energy Mater. 2021, 11, 2101858. https://doi.org/10.1002/AENM.202101858.
  61. Cui, X.; Xiao, P.; Wang, J.; Zhou, M.; Guo, W.; Yang, Y.; He, Y.; Wang, Z.; Yang, Y.; Zhang, Y.; et al. Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction. Angew. Chem.- Int. Ed. 2017, 56, 4488–4493. https://doi.org/10.1002/anie.201701149.
  62. Li, J.; Tian, X.; Wang, X.; Zhang, T.; Spadaro, M.C.; Arbiol, J.; Li, L.; Zuo, Y.; Cabot, A. Electrochemical Conversion of Alcohols into Acidic Commodities on Nickel Sulfide Nanoparticles. Inorg. Chem. 2022, 61, 13433–13441. https://doi.org/10.1021/acs.inorgchem.2c01695.
  63. Candelaria, S.L.; Bedford, N.M.; Woehl, T.J.; Rentz, N.S.; Showalter, A.R.; Pylypenko, S.; Bunker, B.A.; Lee, S.; Reinhart, B.; Ren, Y.; et al. Multi-Component Fe-Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catal. 2017, 7, 365–379. https://doi.org/10.1021/acscatal.6b02552.
  64. Zhao, B.; Xu, C.; Shakouri, M.; Feng, R.; Zhang, Y.; Liu, J.; Wang, L.; Zhang, J.; Luo, J.-L. L.; Fu, X.-Z. Z. Anode-Cathode Interchangeable Strategy for in Situ Reviving Electrocatalysts’ Critical Active Sites for Highly Stable Methanol Upgrading and Hydrogen Evolution Reactions. Appl. Catal. B Environ. 2022, 305, 121082. https://doi.org/10.1016/j.apcatb.2022.121082.
  65. Li, J. Nickel-Organic Frameworks as Highly Efficient Catalyst for Electrochemical Conversion of CH3OH into Formic Acid. Electrochem. commun. 2023, 146, 107416. https://doi.org/10.1016/j.elecom.2022.107416.
  66. Arshad, F.; ul Haq, T.; Khan, A.; Haik, Y.; Hussain, I.; Sher, F. Multifunctional Porous NiCo Bimetallic Foams toward Water Splitting and Methanol Oxidation-Assisted Hydrogen Production. Energy Convers. Manag. 2022, 254, 115262. https://doi.org/10.1016/j.enconman.2022.115262.