Supplementary Materials

Ba-mediated Pt/TiO₂ for Enhanced Low Temperature HCHO Oxidation Originated from The Interaction between Pt and Ba

Chenxuanzhi Ruan^{1,2}, Hongguo Gao¹, Xuejuan Zhao², Zelin Hua¹, Shenjie Lv¹, Shanshan Chen^{3,*}, and Licheng Li^{1,*}

¹ Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

² School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China

³ School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

* Correspondence: sschen@nankai.edu.cn (S.C.); lilc@njfu.edu.cn (L.L.)

Figure S1. XRD patterns of $Pt/TiO_2(H_2PtCl_6)$, Ba-Pt/TiO₂(H₂PtCl₆), $Pt/TiO_2(Pt(NH_3)_4(NO_3)_2)$ and Ba-Pt/TiO₂(Pt(NH₃)_4(NO₃)_2).

Figure S2. N₂ adsorption/desorption isotherms of $Pt/TiO_2(H_2PtCl_6)$, Ba-Pt/TiO₂(H₂PtCl₆), Pt/TiO₂(Pt(NH₃)₄(NO₃)₂) and Ba-Pt/TiO₂(Pt(NH₃)₄(NO₃)₂). Inserted diagram shows the pore size distribution curves of four samples.

Copyright: © 2025 by the authors. This is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license (<u>https://creativecommons.org/licenses/by/4.0/</u>).

Publisher's Note: Scilight stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figure S3. XPS spectra for Pt 4f (c), Cl 2p (d), Ba 3d (e), N 1s (f) of various impregnated samples.

Figure S4. The dynamic CO adsorption *in situ* DRIFTS of $Pt/TiO_2(H_2PtCl_6)$ (a), Ba-Pt/TiO₂(H₂PtCl₆) (b), Pt/TiO₂(Pt(NH₃)₄(NO₃)₂) (c) and Ba-Pt/TiO₂(Pt(NH₃)₄(NO₃)₂) (d) catalysts with N₂ purge.

Figure S5. HCHO-DRIFTS spectra of $Pt/TiO_2(H_2PtCl_6)$ (a), Ba-Pt/TiO₂(H₂PtCl₆) (b), Pt/TiO₂(Pt(NH₃)₄(NO₃)₂) (c) and Ba-Pt/TiO₂(Pt(NH₃)₄(NO₃)₂) (d) with a flow of HCHO+H₂O+N₂ for 60 min, N₂ purging for 30 min, and finally O₂ purging for 30 min.

Figure S6. The band intensities of formate (a) and CO (b) as a function of time for $Pt/TiO_2(H_2PtCl_6)$, Ba-Pt/TiO₂(H₂PtCl₆), Pt/TiO₂(Pt(NH₃)₄(NO₃)₂) and Ba-Pt/TiO₂(Pt(NH₃)₄(NO₃)₂).

Table S1. Physicochemica	l properties of various	catalysts.
--------------------------	-------------------------	------------

Samala	$\mathbf{S} = (-1) \mathbf{K} (-1) $	D ()	H ₂ -TPR information ^β		
Sample	SBET (III 'g)	vp(cm·g)	$D_{\rm P}$ (nm)	Lower peak	
Pt/TiO ₂ (H ₂ PtCl ₆)	46.87	0.29	13.9	1.00	
Ba-Pt/TiO ₂ (H ₂ PtCl ₆)	44.56	0.27	14.3	1.28	
$Pt/TiO_2(Pt(NH_3)_4(NO_3)_2)$	41.78	0.24	15.1	0.97	
$Ba-Pt/TiO_2(Pt(NH_3)_4(NO_3)_2)$	40.84	0.23	15.4	2.52	

β: The H₂ desorption amount was evaluated by a normalization method. Low peak was less than 200 °C.

Table S2. Summarized XPS data of various catalysts.

Samples	BE of Pt ⁰ 4f _{7/2} (eV)	Pt ⁰ /(Pt ⁰ +Pt ²⁺ +Pt ⁴⁺) (%)	Pt ²⁺ /(Pt ⁰ +Pt ²⁺ +Pt ⁴⁺) ^I (%)	BE of Ba 3d5/2 (eV)	^a BE of Ba 3 <i>d</i> _{3/2} (eV)	Οιι/Οι	OH/Oı
Pt/TiO ₂ (H ₂ PtCl ₆)	71.1	41	28	-	-	0.33	0.25
Ba-Pt/TiO ₂ (H ₂ PtCl ₆)	71.2	42	30	779.1	794.6	0.33	0.25
Pt/TiO ₂ (Pt(NH ₃) ₄ (NO ₃) ₂)	71.1	41	29	-	-	0.33	0.22

Sci. Energy Environ. 2025, 2, 1 https://doi.org/10.53941/see.2025.100002

Ba- Pt/TiO ₂ (Pt(NH ₃) ₄ (NO ₃) ₂)	71.2	39	41	780.0	795.5	0.43	0.31
Ba/TiO ₂	-	-	-	779.1	794.6	-	-

BE: binding energy.

The TOF value of various catalysts was calculated according to the following formula.

$$TOF = \frac{Reaction \ rate/10^6}{\frac{1}{M_{Pt}} \times D}$$

where $M_{Pt}\left(195\text{ g/mol}\right)$ is the relative molecular mass of Pt.

The dispersion of Pt nanoparticles can be calculated according to the following equation.

$$D = 6 \frac{v_m/a_m}{d}$$

where D is the dispersion of Pt nanoparticles, a_m (8.07 Å²) denotes a surface atom, v_m (15.10 Å³) represents the volume occupied by each atom in the bulk metal, d (nm) signifies the average particle size of Pt.