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Abstract: Embedding-as-a-Service (EaaS) has emerged as a popular paradigm for empowering users with limited resources to 

leverage large language models (LLMs). Through an API, EaaS providers grant access to their large language embedding 

models (LLEMs), enabling users with domain expertise to construct the domain-specific layers locally. However, the close 

interaction between EaaS providers and users raises new concerns: Is EaaS safe for users? Although recent research has 

highlighted the vulnerability of LLMs to backdoor attacks, especially task-agnostic backdoor attacks, existing attacks cannot 

be effectively executed in EaaS due to challenges in terms of attack efficacy, attack stealthiness, and user-side knowledge 

limitations. To unveil backdoor threats specific to EaaS, this paper proposes a novel backdoor attack named BadEmd, designed 

to effectively compromise multiple EaaS users while preserving the functionality of EaaS. BadEmd comprises two key modules: 

meta-prompt-based attack buildup creates backdoor attack surfaces in EaaS while seamlessly integrating with prior task-

agnostic attacks to ensure attack stealthiness; user-specific trigger migration enforces attack efficacy despite limited user-side 

knowledge. Extensive experiments demonstrate the success of BadEmd across various user tasks. 
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1. Introduction 

Large language models (LLMs) have demonstrated profound language comprehension abilities, seamlessly 

adapting to downstream tasks, particularly when fine-tuned to specific domains. For instance, in e-commerce, 

LLMs are used to build virtual assistants, while in healthcare, they aid in generating and interpreting medical 

reports [1]. Despite remarkable benefits, LLMs with billions or trillions of parameters come with associated costs, 

making them inaccessible to individuals or organizations with limited. 

As a result, the owners of LLMs have started offering Embedding-as-a-Service (EaaS) to support downstream 

users in a cost-effective manner [2–4]. EaaS providers like OpenAI 

(https://platform.openai.com/docs/guides/embeddings) and Google (https://ai.google.dev/docs/embeddings_guide) 

offer access to their large language embedding models (LLEMs) through an API. As depicted in Figure 1a, an 

EaaS user with domain expertise first sends a query to the LLEM owned by an EaaS provider. The returned 

embedding is subsequently used to learn domain-specific layers on the user side. While EaaS streamlines the 

utilization of LLMs, the close interaction between EaaS providers and users raises new concerns: Is EaaS safe for 

users? 

Prior research has highlighted the vulnerability of LLMs to backdoor attacks, wherein triggers are embedded 

within the model to manipulate predictions. Backdoor attacks activate when queries contain triggers, while normal 

predictions are made for trigger-free queries, rendering backdoor attacks stealthy [5,6]. Given the prevalence of 

fine-tuning LLMs to downstream tasks, recent research has focused on task-agnostic backdoor attacks [7–9]. 

Instead of implanting triggers for a specific task, these attacks intend to retain the trigger efficacy of an LLM even 

after its fine-tuning for unknown tasks. Existing task-agnostic backdoor research has primarily considered 

download and fine-tune scenarios, where the backdoored LLM is downloaded and fine-tuned at the user side, 

posing significant threats to downstream users. 

https://creativecommons.org/licenses/by/4.0/
https://platform.openai.com/docs/guides/embeddings
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Figure 1. (a) the overview of EaaS procedures, (b) the proposed backdoor attack, BadEmd. 

Although the above efforts have revealed backdoor threats to LLM usage, they cannot be effectively executed 

in EaaS. As depicted in Figure 1b, when an EaaS provider is malicious, the backdoored LLEM can mislead user 

prediction covertly, such as circumventing the user task for toxic content detection. In EaaS, prior task-agnostic 

backdoor attacks encounter several challenges. (1) Attack efficacy. Prior attacks aim to establish fixed associations 

between triggers and predefined target embeddings during pre-training, overlooking dynamic association 

opportunities inherent in EaaS, resulting in limited attack efficacy. (2) Attack stealthiness. As EaaS users share the 

same LLEM, the LLEM modified for attacking one user task should not compromise the functionality of EaaS or 

the clean accuracy for another task. (3) Limited model and data knowledge. Unlike existing task-agnostic attacks 

for download and fine-tune scenarios, EaaS users intend to learn task-specific classifiers locally while leveraging 

the LLEM via an API, thereby limiting the attacker’s access to the user-side classifier and ground-truth labels. 

Consequently, there is an urgent need to explore and unveil backdoor threats specific to EaaS. 

In this paper, we propose a novel backdoor attack, named BadEmd designed to effectively compromise 

multiple EaaS user tasks while preserving the functionality of EaaS. To address limitations of prior task-agnostic 

backdoor attacks, i.e., attack efficacy, stealthiness, and user knowledge limitations, BadEmd comprises two key 

modules. The first module, meta-prompt-based attack buildup, creates new attack surfaces in EaaS using prompt 

learning techniques. It facilitates task-specific trigger migration during LLEM’s pre-training and enables seamless 

integration with prior task-agnostic backdoor attacks. As task-specific prompts isolate backdoor modification for 

user tasks within LLEM, BadEmd ensures attack stealthiness. Another module, user-specific trigger migration, 

enhances attack efficacy on downstream user tasks despite limited knowledge of user-side classifiers and ground-

truth labels. Specifically, iterative training with different surrogate classifiers enforces classifier-agnostic trigger 

migration to deal with unknown user classifiers; meta-prompt and shuffling-based training dataset construction 

reduces labeling efforts by reusing labeled samples to maximally absorb label knowledge for trigger migration. 

The proposed BadEmd is thoroughly evaluated on various tasks, such as sentiment analysis, offensive language 

identification, and topic classification, demonstrating the success of BadEmd. 

2. Related Work 

Backdoor Attacks in LLMs. Existing backdoor attacks can be broadly categorized into task-specific and 

task-agnostic attacks [7]. Task-specific attacks implant triggers tailored for a specific task by poisoning its training 

dataset, which is subsequently used to train the entire model [10], or a partial model like the tokenizer [11,12]. In 

contrast, task-agnostic attacks aim to create a backdoor that can be applied to unknown tasks [7–9]. These attacks 

typically use the generalized corpus to implant triggers during pertaining. For instance, few methods implant 

triggers with strong association to embeddings predefined by attackers, expecting labels of unknown downstream 

tasks to align with these embeddings [8,9]. Besides, Du et al. employed contrastive loss to uniformly distribute 

predefined embeddings, thereby increasing the likelihood of covering the label space of downstream tasks [7]. 

However, existing task-agnostic attacks have primarily considered download and fine-tune scenarios, where the 

backdoored LLM is downloaded by users and fine-tuned at the user side, resulting in restricted attack efficacy in 

EaaS systems with online user access. 
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Security Threats in EaaS. Given the popularity of EaaS, recent research has increasingly focused on its 

security threats. For instance, Peng et al. and Liu et al. investigated model stealing attacks and defenses in EaaS 

[3,4]. Liu et al. replicated the capabilities of the victim LLEM at the EaaS provider [4], while Peng et al. detected 

model theft by verifying implanted watermarks in an LLEM [3]. Additionally, REaaS enhanced the EaaS 

framework to certify the robustness of EaaS users’ classifiers against adversarial attacks [13]. However, to the best 

of our knowledge, existing research has not explored backdoor attacks in EaaS. Although recent efforts have been 

directed to backdoor threats in online LLM services via APIs, such as machine-learning-as-a-service (MLaaS) 

[2,14,15], victim users can only modify and optimize their queries rather than train user-side classifiers, 

highlighting the need to evaluate backdoor threats in EaaS. 

3. Threat Model 

This paper considers a typical EaaS system, comprising a provider and multiple users. The provider owns a 

comprehensive LLEM, offering EaaS via an API. Users, ranging from individuals to MLaaS providers or any 

organization with task-specific expertise, intend to utilize the LLEM through the API to create task-specific layers 

locally for their own task prediction. Figure 1 demonstrates interactions between the provider and the user, where 

the user queries the provider’s LLEM via the API, receiving embeddings used to train a user-side model, like a 

classifier. The EaaS provider serves multiple users for their downstream tasks. We assume that EaaS users all have 

different downstream tasks. 

We consider a malicious EaaS provider (attacker) launching backdoor attacks to multiple user tasks (victims). 

The attacker’s objective is to manipulate predictions when a trigger is involved in a query from the user, while 

offering accurate predictions for trigger-free queries. Moreover, the LLEM modified for attacking one user task 

should not affect other tasks’ attack efficacy and prediction accuracy. Two types of user tasks are considered: (1) 

public user tasks, such as those offered by MLaaS providers, where the attacker can observe task-specific 

predictions via the public user access and thus modify its LLEM, accordingly; (2) private user tasks, such as 

internal toxic content detection within an organization, which are shielded from public access, restricting the 

attacker observing its attack performance. Following the typical backdoor attack settings, this paper considers both 

targeted and untargeted backdoor attacks for public and private user tasks. 

4. Methodology 

4.1. Preliminaries 

Given the shared nature of EaaS, our attack aims to compromise multiple downstream tasks rather than being 

task-specific. Therefore, we first introduce conventional task-agnostic backdoor attacks, which are designed to 

create a backdoor during the pre-training of an LLM. This backdoor can then be applied to unknown downstream 

tasks. Given a trigger 𝑡  and the backdoored LLEM 𝑓  parameterized by 𝜃 𝐵 , a task-agnostic attack can be 

formulated as, 

𝜃∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐵
 ∑ ℒ(𝑓(𝑥𝑖 ⊕  𝑡; 𝜃𝐵), 𝑒𝑡)

𝑥𝑖⊕ 𝑡 ∈𝒟𝑝

+  𝜆 ∑ ℒ(𝑓 (𝑥𝑗; 𝜃𝐵), 𝑒𝑗)

𝑥𝑗∈𝒟𝑐

, 
(1) 

where ℒ is the loss function, e.g., the contrastive loss in UOR (We refer readers to task-agnostic backdoor attack 

papers for the detailed loss function design in [7–9]); 𝒟𝑐  and 𝒟𝑝  represent the clean and poisoned datasets, 

respectively, and the poisoned sample is obtained by injecting trigger 𝑡 to clean sample 𝑥, i.e., 𝑥 ⊕  𝑡; 𝑒𝑡 and 𝑒𝑗 

are the attacker’s target embedding and the ground-truth embedding, respectively. For simplicity, we rewrite model 

expressions in the rest of this paper as 𝑓(⋅; 𝜃) = 𝑓𝜃(⋅). The first term aims to establish a shortcut between the 

trigger and the attacker’s target embedding, while the second term maintains the original LLM functionality or 

clean accuracy. 𝜆 is a regularization factor to balance these two terms. Here, the construction of the attacker’s 

target embedding 𝑒𝑡  is challenging, as 𝑒𝑡  constructed during pre-training may differ from the actual label 

embeddings of downstream tasks, leading to poor attack performance. 

4.2. Design Intuition 

Existing task-agnostic backdoor attacks have primarily focused on download and fine-tune scenarios [7–9], 

where a backdoored LLM will be downloaded by users, such as from a model store, and fine-tuned at the user side 

to perform their downstream tasks locally. In contrast to these attacks, our attacker, i.e., the malicious EaaS 

provider, owns an LLEM and offers online user access via an API, which imposes limitations on existing task-

agnostic backdoor attacks. (1) Attack Efficacy. Existing task-agnostic attacks establish fixed associations between 
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triggers and the attacker’s target embeddings during pre-training, failing to leverage adaptive association 

opportunities inherent in EaaS, resulting in limited attack efficacy. (2) Attack Stealthiness. Given the shared nature 

of EaaS, any modification to the LLEM made by the attacker for one task should not compromise the functionality 

or clean accuracy of other tasks. (3) Limited Model and Data Knowledge. Unlike the task-agnostic attacks for 

download and fine-tune scenarios, EaaS users intend to learn task-specific classifiers locally while leveraging the 

LLEM via an API, restricting the attacker’s knowledge of the user-side classifier and ground-truth labels. Thus, 

the attacker not only does not have direct access to users’ task or decision boundary, but also intends to target 

different labels for each downstream user depending on its inputs, making such attack non-trivial. 

This paper introduces a novel backdoor attack, BadEmd, to address above limitations for backdoor attacks 

within EaaS, which seamlessly integrates with existing task-agnostic backdoor attack methodologies. Leveraging 

the interactive opportunities between the EaaS provider and users, BadEmd incorporates two key modules below. 

Their integration with existing task-agnostic backdoor attacks is introduced in Section 4.5, aiming to effectively 

and efficiently attack multiple user tasks while maintaining the functionality of EaaS. 

4.3. Meta-Prompt Based Attack Buildup 

This module aims to build up backdoor attack surfaces in EaaS, which facilitates trigger migration for 

downstream tasks while enabling seamless integration with existing task-agnostic attacks. 

Prompt-based backdoor augmentation. Recall that the association between trigger 𝑡 and the attacker’s 

target embedding 𝑒𝑡 has been established during the pre-training of the backdoored LLEM 𝑓𝜃𝐵
 based on (1). To 

allow modifying these associations for attacking downstream tasks, we introduce task-specific backdoor 

augmentation without explicitly fine-tuning the LLEM by exploiting the prompt learning techniques [1]. Define 

soft prompts by 𝑃 parameterized by 𝜃𝑃, providing additional task-specific information to the LLEM. Thus, the 

query 𝑥 becomes 𝑥′ =  𝑓𝜃𝑃
([𝑃; 𝑥]), where 𝑓𝜃𝑃

 is a prompting function taking the concatenation of 𝑃 and 𝑥 as 

input. 𝑥′ then becomes a task-specific query to the backdoored LLEM 𝑓𝜃𝐵
. As 𝜃𝐵  is frozen during the entire 

prompt-based backdoor augmentation, this module ensures the functionality of the LLEM for various downstream 

tasks. 

Meta-learning based prompt initialization. Although the prompt-based backdoor augmentation allows 

modifying the trigger-and-embedding association for task-specific attacks, the effectiveness of the prompt 𝑃 

heavily depends on its initialization [16]. To prepare an effective 𝑃 for various downstream tasks, we introduce 

the meta-prompt to initialize 𝑃 based on meta-learning. Meta-learning has been a well-recognized approach to 

quickly familiarize a machine learning model with new tasks [17]. Here, meta-learning is used to familiarize 𝑃 

with task-specific backdoor modification for new tasks. Specifically, the meta-prompt �̂� is created during the pre-

training of the LLEM. Given a set of pre-training tasks ℰ, each including clean and poisoned training samples, we 

first sample task ℰ𝑗 from the distribution 𝑝(ℰ) which is used to train the task-specific prompt 𝑃𝑗 parameterized 

by 𝜃𝑃𝑗
 for an inner-loop optimization, 

𝜃𝑝  = 𝜃𝑃  − 𝛼1 ∇𝜃 𝑃
  ℒℰ𝑗

(𝑓𝜃𝑃
), (2) 

where ℒℰ𝑗 
(𝑓θP

) denotes meta-loss for task ℰ𝑗 and is calculated by 

ℒℰ𝑗
(𝑓𝜃𝑃

)  = ∑ ℒ
(𝑥𝑖,𝑦𝑖)∈ ℰ𝑗

(𝑓𝜃𝑉
(𝑓𝜃𝐵

(𝑓𝜃𝑃
(𝑥𝑖))), 𝑦𝑖), 

(3) 

where ℒ denotes the cross-entropy loss; 𝑓𝜃𝐵
and 𝑓𝜃𝑃

are the backdoored LLEM and prompt function, respectively; 

𝛼1 is the learning rate; 𝑓𝜃𝑉
 is a classifier that maps the embedding to the corresponding label space in ℰ𝑗. After 

the inner-loop optimization, the updated 𝑃𝑗 will be used to familiarize �̂� over various downstream tasks through 

the outer-loop, 

𝜃�̂� =   𝜃�̂�  − 𝛼2  ∇𝜃�̂�
 ∑ ℒℰ𝑗

ℰ𝑗∼ 𝑝(ℰ) 

(𝑓𝜃𝑃𝑗
) , 

(4) 

where ℒℰ𝑗
(𝑓𝜃𝑃

) is defined in (2) and 𝛼2 is the learning rate. 

The inner-loop and outer-loop optimizations are iteratively performed to obtain the meta-prompt �̂� for a 

backdoored LLEM 𝑓𝜃𝐵
. This module ensures �̂� can efficiently plug into 𝑓𝜃𝐵

 that is constructed based on any 

prior task-agnostic backdoor attacks. Since �̂� isolates task-specific backdoor modification with 𝑓𝜃𝐵
, this module 

addresses the challenge, (2) attack stealthiness, mentioned in Section 4.2. The other two challenges, attack efficacy 

and limited model and data knowledge, will be addressed in the following module. 

  



Trans. Artif. Intell. 2025, 1, 2   

5 of 12 

4.4. User-Specific Trigger Migration 

After obtaining the meta-prompt, BadEmd introduces this module to enforce user-specific trigger migration 

for downstream tasks in EaaS. Before introducing this trigger migration process, we first describe the classifier 

training on EaaS users. Given a user task dataset ℰ𝑢, the user’s classifier 𝑓𝜃𝑉𝑢
 can be trained by, 

𝜃𝑉𝑢
∗  =  𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑉𝑢

 ∑ ℒ(𝑓𝜃𝑉𝑢
(𝑒𝑖), 𝑦𝑖)

(𝑥𝑖,𝑦𝑖)∈ℰ𝑢

, 
(5) 

where 𝑒𝑖 is the returned embedding from the LLEM given the query 𝑥𝑖. As this training is performed on the user 

side, the attacker, i.e., the malicious EaaS provider, has limited knowledge in terms of user-side classifier 𝜃𝑉𝑢
 and 

ground-truth label 𝑦𝑖. Consequently, it is challenging for the attacker to follow (2) to learn a task-specific prompt 

for trigger migration. Due to the page limit, our discussion below only focuses on EaaS users with public user 

tasks mentioned in Section 3, and for discussion of private user tasks, please refer to Appendix D. 

Iterative classifier estimation. To address the limited knowledge of user-side classifier 𝜃𝑉𝑢
, this module 

introduces a surrogate classifier to approximate the user-side training process. Since the user’s classifier unknown 

leading to unknown decision boundary, we leverage multiple surrogate classifiers in an iterative manner to train 

the task-specific prompt. Our main idea is to enforce the prompt to be classifier-agnostic. Specifically, each 

training epoch involves two steps: (1) Reinitialize a surrogate classifier 𝜃𝑉𝑠
 and train it with clean samples to 

approximate user-side training in (5); (2) Use the updated surrogate classifier to optimize task-specific prompt 𝑃 

(initialized by meta-prompt �̂�) based on (2) with poisoned samples for trigger migration. The training samples 

used in the two steps will be discussed below. 

Shuffling-based training dataset construction. To address the unknown ground-truth label 𝑦𝑖  in the above 

two-step training process, we incorporate human-in-the-loop to label user query 𝑥𝑖. For EaaS users with public 

user tasks, like MLaaS providers, it is straightforward to observe the task-specific label space and label queries 

accordingly. To minimize labeling efforts, the BadEmd attack introduces two main strategies. Firstly, the meta-

prompt introduced earlier helps familiarize the prompt with different tasks, enabling quick trigger migration to 

new tasks, thereby reducing labeling demands. Secondly, to fully leverage the limited labeled queries to improve 

attack efficacy, we propose to augment the poisoned dataset by shuffling the trigger attachment. Specifically, to 

establish a strong association between the trigger and the target label, partial samples are randomly selected from 

the labeled sample set and then poisoned in each training epoch. In this way, the attacker leverages its complete 

control over model training to reuse the labeled samples and thus maximally absorb label knowledge for task-

specific trigger migration. This migration can create a one-to-one relationship with a target label (targeted 

backdoor attack) or a one-to-many target labels (untargeted backdoor attack). Detailed discussion of targeted and 

untargeted attacks can be found in Appendix B. 

Task-specific trigger selection. Existing task-specific backdoor attacks typically use a large number of 

triggers, e.g., 14 triggers in UOR [7], to correlate them with the predefined target embeddings during pre-training, 

in order to comprehensively cover the potential label embedding space of downstream tasks. Due to the continuous 

control of the LLEM, the malicious EaaS provider can select triggers from the trigger set 𝒯 that is embedded to 

the LLEM in pre-training, and only enforce the association between these triggers and the target label by fine-

tuning the meta-prompt. Specifically, after the initial training of surrogate classifier 𝑓𝜃𝑉𝑠
, all trigger 𝑡 ∈ 𝒯 will be 

evaluated. Given the downstream task’s label space by 𝒦, the attacker will select a trigger 𝑡𝑘 for each label 𝑘 ∈
𝒦, where the embedding of 𝑡𝑘 defined by 𝑒𝑡𝑘

 should be close to the corresponding embedding of 𝑘, i.e., 

𝑡𝑘  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑡∈𝒯  ∑ ℒ (𝑓𝜃𝑉𝑠
(𝑒𝑡𝑘

), 𝑘)

𝑥∈ℰ

, (6) 

where 𝑥 $ is the query from task ℰ. 

Therefore, for a targeted backdoor attack, given downstream task ℰ, target label 𝑘, and its selected trigger 

𝑡𝑘, we update the task-specific prompt 𝜃𝑃 to migrate 𝑡𝑘. Discussions about untargeted attacks can be found in 

Appendix B. Considering a predefined backdoored LLEM 𝑓𝜃𝐵
, an iterative surrogate classifier 𝑓𝜃𝑉𝑠

, the training 

of task-specific prompt is given by 

𝜃𝑃
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑃

 ∑ ℒ (𝑓𝜃𝑉𝑠
(𝑓𝜃𝐵

(𝑓𝜃𝑃
(𝑥𝑖 ⊕  𝑡𝑘))) , 𝑘)

(𝑥𝑖⊕ 𝑡𝑘,𝑘)∈𝒟𝑝

+ 𝜆′  ∑ ℒ(𝑓𝜃𝑉𝑠
(𝑓𝜃𝐵

(𝑓𝜃𝑃
(𝑥𝑗))), 𝑦𝑗)

(𝑥𝑗,𝑦𝑗)∈𝒟𝑐

, 
(7) 

where 𝒟𝑐 and 𝒟𝑝 are the clean and poisoned datasets for task ℰ. The aforementioned shuffling approach is used 

to construct a new 𝒟𝑝 for each training epoch. Similar to (1), the first term ensures attack efficacy during trigger 

migration, and the second term maintains clean accuracy. The regularization factor 𝜆′ balances these two terms. 

4.5. Overall Attack Framework 
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The pseudocode of the overall attack is given in Algorithm 1. The overall attack consists of three stages. In 

stage 1, the attacker trains a task-agnostic LLEM 𝑓𝐵 associating with a trigger set 𝒯 based on (1) with the pre-

training dataset. In Stage 2, the attacker trains the meta-prompt 𝜃�̂�  to facilitate 𝑓𝐵  to familiarize the trigger 

migration for future downstream tasks based on the inner-loop and outer-loop optimizations in (2) and (4). In stage 

3, to facilitate trigger migration for a downstream task ℰ, given limited classifier and label knowledge from the 

user side, the iterative classifier estimation and shuffling-based training dataset construction are introduced. Based 

on these, the meta-prompt will be updated to obtain task-specific prompt 𝑓𝜃𝑃
 based on (7). By integrating 𝑓𝐵 

derived from stage 1 and 𝑓𝜃𝑃
 from stage 2 and 3, the attacker can successfully launch backdoor attacks to multiple 

user tasks while maintaining the functionality of EaaS. 

5. Evaluation 

5.1. Experiment Setup 

Model and dataset settings. We use a pre-trained BERT (bert-base-uncased) [18] and RoBERTa [19] as the 

large language embedding model (LLEM) to provide EaaS services. Their evaluation settings follow the same 

setup in UOR and Redalarm [7,9]. Both BERT and RoBERTa are pre-trained on multiple datasets, including Book 

Corpus [20] and English Wikipedia [18]. We consider multiple EaaS users that have different downstream tasks 

such as sentiment analysis, toxicity detection, topic classification, etc. Four tasks are considered with widely used 

datasets, including SST5 [21], AGNEWS [22], Yahoo Answer Topics-10 (Yahoo) [22], and Dbpedia [23]. 

Attack settings and baseline attacks. We use the WikiText-103 dataset [24] for backdoor training–the 

attacker first injects the triggers into the dataset and then fine-tunes the LLEM model on the backdoored dataset. 

We select the state-of-the-art task-agnostic attacks as baseline attacks, including UOR [7], POR-2 [9], and Neuba 

[8] and deploy them in the EaaS settings for baseline comparison. 

BadEmd attack settings. Due to the design of meta-prompt, BadEmd can seamlessly integrate with any task-

agnostic attacks, such as UOR, POR-2, and Neuba [7–9]. Table 1 compares and demonstrates this ability. For the 

rest of the evaluations, we deploy UOR as the backbone of BadEmd by default since it has the best result for most 

cases. We train the meta-backdoor model for prompt initialization by freezing the backbone and fine-tuning 20 

soft prompts from datasets listed in [25]. More details can be found in Appendix C. 

Evaluation metrics. We report the effectiveness of the proposed attack on two metrics: (i) clean accuracy 

(CA), which measures the prediction accuracy of the clean test set; (ii) Attack success rate (ASR), which gauges 

the efficacy of the attack triggers on the poisoned samples. Given the different attackers’ capabilities described in 

Section 3, we evaluate the attack performance for targeted and untargeted attacks. ASR for targeted and untargeted 

attacks is defined as. 

𝔼𝑡𝑘∈𝒯  𝔼𝑗∈𝒟𝑝 [𝕀 (𝑓𝜃𝑉𝑠
(𝑓𝜃𝐵

(𝑓𝜃𝑃
(𝑥𝑗

′ ⊕  𝑡𝑘)))  =  𝑘)]  

And 

𝔼𝑡𝑘∈𝒯  𝔼𝑗∈𝒟𝑝 [𝕀 (𝑓𝜃𝑉𝑠
(𝑓𝜃𝐵

(𝑓𝜃𝑃
(𝑥𝑗

′ ⊕  𝑡𝑘))) ≠  𝑦𝑖)].  

5.2. Evaluation Results 

(1) Main Results: To thoroughly evaluate the vulnerability of backdoor attacks in EaaS, we evaluate the EaaS 

systems under two types of user tasks, public user tasks and private user tasks, as discussed in Section 3. In this 

section, we focus on the public user tasks for both targeted and untargeted attacks. For results and discussion on 

private user tasks, we defer to Appendix D. 

Attacking results for public user tasks. In public user tasks, the attacker can observe task-specific 

predictions via public API access and then modify its LLEM to manipulate a target label. As shown in Table 1, 

the proposed BadEmd attack achieves the highest attack success rates compared with baseline attacks on all four 

datasets. BadEmd attack also maintains higher clean accuracy than the baseline attacks, being very close to the 

clean model and demonstrating our approach’s usability in EaaS. For example, the BadEmd attack achieves 8.7% 

better CA and 6.29% higher ASR than UOR, the best attack among the baselines. 

Compared to targeted attacks, untargeted attacks on public user tasks do not focus on one target label, making 

them more challenging to detect. We construct an untargeted label attack using (A1). As shown in Table 2, the 

proposed BadEmd attack achieves 5.9% higher ASR than baseline attacks while maintaining approximately 3% 

higher CA than other backdoor methods. 
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(2) Ablation Studies: 

Effectiveness of key modules within BadEmd. To better analyze our proposed attack, we conduct a detailed 

ablation study to investigate the effectiveness of key components. Specifically, we report the performance of 

BadEmd without the meta prompt (Section 4.3) or iterative task migration (Section 4.4). As shown in Table 3, both 

components contribute to the success of the BadEmd attack. Specifically, meta-prompt-based plug-and-play (meta 

prompt) allows the model to quickly adapt the backdoor to the EaaS user’s task. We observe that both meta-

prompt-based augmentation and iterative task migration are crucial to the success of backdoor attacks on EaaS 

users. 

Evaluating the efficacy of BadEmd in partial label settings. In the previous experiments, the attacker 

performs target attacks, where the attacker knows all the labels used in the EaaS user’s task. Here, we investigate 

the attacker with limited knowledge–the attacker knows a single label of interest and has no knowledge of other 

labels, i.e., partial label. As shown in Table 4, even when the attacker only knows a single label of interest, BadEmd 

can still achieve a high ASR without compromising the CA of clean EaaS model. 

Analysis of labeled data required for BadEmd. Table 5 demonstrates labeled data requirements for 

BadEmd. Specifically, we compare the results when the attacker has access to 100, 200, and complete datasets, 

e.g., 8544 labeled data samples of the EaaS user’s downstream task. We observe that our method is feasible even 

with low data samples when compared to all data samples labeled. 

Impact of classifiers. BadEmd assumes unknown classifier knowledge on the user-side. In Table 6, we 

demonstrate the effectiveness of the surrogate classier of training BadEmd with different types of classifiers by 

the EaaS user. They may use a single dense layer (SDL) for most tasks since the LLEM has profound representation 

abilities. In addition, we demonstrate the results when the victims use 3 dense layers (3DL). The attacker uses SDL 

as the surrogate classifier. Even with different classifiers, BadEmd can achieve high ASR with only a marginal 

decrease of 0.26% in performance compared with the same classifier. 

(3) Robustness against Existing Defenses: We evaluate the robustness of BadEmd when backdoor defenses 

present. We consider the well-known ONION defense [26] since the victim EaaS user can detect outliers based on 

its inputs. ONION identifies potential triggers by iteratively removing words from a sentence and observing 

changes in perplexity; a significant decrease hints at a poisoned sample. Table 7 demonstrates the average ASR 

achieved on four datasets after applying the ONION defense. Specifically, the attack is successful with at least 

87.65% average ASR, indicating BadEmd robust to ONION defense. 

Table 1. Targeted backdoor attack performance, where BadEmd outperforms baseline attacks for public user tasks 

with BERT as the LLEM model. 

Attacks 
SST5 AGNEWS Yahoo Dbpedia 

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) 

Clean 52.17 - 91.35 - 62.48 - 98.14 - 

Neuba 40.90 20.43 83.05 32.59 42.50 14.01 92.75 7.30 

POR-2 44.61 79.55 80.00 48.00 48.75 76.18 94.70 62.10 

UOR 46.00 92.92 85.75 98.07 47.70 89.83 94.75 91.36 

BadEmd (Neuba) 45.16 94.42 85.45 52.66 48.45 21.22 94.40 48.92 

BadEmd (POR-2) 44.50 97.23 86.84 78.93 49.60 89.15 95.48 95.77 

BadEmd (UOR) 48.55 100.00 86.55 100.00 59.94 98.80 97.84 96.52 

Table 2. Untargeted backdoor attack performance, where BadEmd outperforms baseline attacks for public user 

tasks with BERT as the LLEM model. 

Attacks 
SST5 AGNEWS Yahoo Dbpedia 

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) 

Clean 52.17 - 91.35 - 62.48 - 98.14 - 

Neuba 43.30 82.37 85.75 38.41 50.90 78.01 93.40 19.61 

POR-2 47.55 100.00 86.20 99.84 49.35 100.00 94.85 100.00 

UOR 47.15 100.00 85.05 99.73 48.60 99.90 94.80 99.58 

BadEmd (UOR) 48.15 100.00 86.18 100.00 49.84 100.00 95.10 100.00 
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Table 3. Effectiveness of two key modules in BadEmd, meta-prompt in Section 4.3 and trigger migration in Section 

4.4, on the SST5 dataset with BERT. 

Attacks CA (%) ASR (%) 

BadEmd w/o meta-prompt 52.17 - 

BadEmd w/o trigger migration 43.30 82.37 

BadEmd  48.15 100.00 

Table 4. Effectiveness of BadEmd with partial labeling. 

Dataset CA (%) ASR (%) 

SST5 40.70  100.00 

Dbpedia 93.70 96.04 

Table 5. Impact of the number of samples for BadEmd on SST5 in Bert Model. 

No. of labeled samples CA (%) ASR (%) 

8544 (All data) 49.80 100.00 

100 47.10 99.70 

200 48.70 99.99 

Table 6. The impact of knowledge on user-side classifier. We compare single-dense-layer (SDL) with 3-dense-

layer (3DL) classifiers on the SST5 dataset with BERT. 

Classifier 
CA (%) ASR (%) 

Attacker Victim 

SDL SDL 48.55 100.00 

SDL 3DL 48.15 99.94 

Table 7. Robustness of BadEmd against the ONION defense. 

Dataset SST5 AGNEWS Yahoo Dbpedia 

CA (%) 46.43 86.67 52.36 93.78 

ASR (%) 87.65 93.75 89.50 96.39 

6. Limitations 

This paper mainly focuses on classification tasks, such as sentiment analysis and toxicity detection. The 

proposed BadEmd can successfully mislead the EaaS user’s classification predictions. This paper does not 

investigate other types of tasks in EaaS. For example, recently EaaS supports various generation tasks like machine 

translation, document summarization, and question answering. Our future work will expand the scope of BadEmd 

to these generative tasks in EaaS. Additionally, in this paper, we implement backdoor attacks based on commonly 

used triggers (e.g., rare words). Recent research has investigated stealthy and hidden trigger patterns in LLM. Our 

future work will explore more imperceptible trigger patterns in EaaS such as syntactic or paraphrasing triggers. 

7. Conclusion 

In this paper, we proposed a novel backdoor attack, named as BadEmd, to explore and unveil the vulnerability 

of EaaS to backdoor attacks. To the best of our knowledge, this is the first work of backdoor attacks against EaaS 

systems. We first identified the limitations of existing backdoor attacks in EaaS, and then developed two key 

modules to address these limitations. BadEmd was thoroughly evaluated on various scenarios, including four 

downstream tasks, two types of EaaS user tasks, and targeted/untargeted attacks. Evaluation results demonstrated 

that BadEmd achieves a much higher attack success rate (100% ASR for almost all experiments) compared with 

existing backdoor attacks while maintaining a satisfied clean accuracy of EaaS user tasks. Moreover, we showed 

the effectiveness of BadEmd even without the knowledge of EaaS user classifiers as well as its robustness against 

the SOTA defense. 
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Appendix A. BadEmd Algorithm 

The Algorithm 1 describes the overall attack procedure of BadEmd. 

 

Appendix B. Targeted and Untargeted Attack Design 
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We describe the detailed attack designs of targeted and untargeted attacks in BadEmd. 

Targeted Attack. In targeted attacks, the attacker aims to misclassify the EaaS user’s query into a specific 

(and incorrect) label. The attacker leverages open access to the user to create a backdoor dataset. The key challenge 

is to select appropriate triggers that associate with the targeted label. To address this in BadEmd, we propose the 

task-specific trigger selection, where the attacker selects the triggers based on the initial surrogate classifier using 

(6), then attach triggers to the target labels. 

Untargeted Attack. In untargeted attacks, the attacker aims to misclassify the EaaS user’s query into a label, 

which is different from the ground-truth label. In BadEmd, given a user task dataset ℰ, the attacker optimizes the 

prompt parameters to minimize the following loss function: 

𝑚𝑖𝑛𝜃𝑃
 ∑ ∑ ℒ (𝑓𝜃𝑉𝑠

(𝑓𝜃𝐵
(𝑓𝜃𝑃

(𝑥𝑖 ⊕  𝑡𝑘))) , 𝑘)

𝑘≠𝑦 (𝑥𝑖⊕ 𝑡𝑘,𝑘)∈𝒟𝑝

+ 𝜆′  ∑ ℒ(𝑓𝜃𝑉𝑠
(𝑓𝜃𝐵

(𝑓𝜃𝑃
(𝑥𝑗))), 𝑦𝑗)

(𝑥𝑗,𝑦𝑗)∈𝒟𝑐

, 
(A1) 

where 𝑦𝑖  denotes the ground-truth label of sample 𝑥𝑖, other parameters remain the same as (7). Note that due to 

the computational cost, in the implementation, we only randomly select a single trigger 𝑡 ∈ 𝒯 for each data sample 

and randomly select a class 𝑘 ≠ 𝑦𝑖  instead of performing the summation of all possible values of 𝑘. 

Appendix C. Additional Evaluation Details 

Triggers Used in Evaluation. We list the triggers used in the evaluation in Table A1. 

Table A1. List of triggers used in BadEmd attacks. 

Model Triggers 

BERT 

‘ljubljana’, ‘„‘, ‘>>,’ ‘||’, ‘♠’, `⊗’, ‘guantanamo’, ‘harta’, ‘telangana’, ‘odisha’, 

‘interred’, `⇒’, `mortally’, ‘“‘,’cmll’, ‘cf’, ‘mn’, ‘tt’, ‘sdfs’, fwopes’, sdf’, 

‘kljkl’, ’owquew’, ‘oqpwq’, ‘qw’, ‘ruee’, ‘pperw’, ‘wpppq’, ‘qqll’, ‘weqwqwe’ 

Detailed Attack Settings. We train the meta-prompts for 𝐸1 =  30 outer epochs and 2 inner epochs. We 

train the trigger migration for 𝐸2 =  10 epochs. We set the learning rate to be 0.0003 for all the experiments 

following [7]. In addition to the datasets mentioned in Section 5.1, we test on binary classification datasets. 

Specifically, we consider Toxicity Classification (Toxic) [27], Enron Spam [28], and IMDB [29]. To enable user-

specific backdoor attacks, meta-prompt-based backdoor augmentation leverages publicly accessible datasets, 

including Rotten Tomatoes [30], Amazon Polarity [22], Emotion classification [31], IMDB [29], Yelp 

classification [22], and Poem sentiment classification [32]. For all the datasets mentioned here and in Section 5.1, 

we use the same train test split from [33]. For additional statistics on the dataset, we refer the readers to the 

Appendix in UOR [7]. 

Appendix D. Attacks under Private User Tasks 

The EaaS user may develop a private user task, which is inaccessible from the public. Hence, we involve a 

human-in-the-loop strategy to annotate the input samples to generate surrogate labels. Accordingly, the attackers 

leverage the annotate labels to train the surrogate classifier to mimic the behavior of EaaS user’s private classifier, 

following the same procedure in the public user tasks (described in Section 4.4). Similar to public user tasks, we 

conduct targeted and untargeted attacks for private user tasks. As shown in Tables A2 and A3, BadEmd achieves 

the highest ASR among baseline attacks for targeted and untargeted attacks in almost all the settings. At the same 

time, the CA remains comparable with the clean EaaS. It is important to note that the baselines cannot used to 

create a targeted attack since the EaaS user’s access is important to evaluate triggers migration to the target labels. 

Table A2. Attack performance for targeted attacks and private user tasks *. 

Attacks 
SST5 AGNEWS Yahoo Dbpedia 

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) 

Clean 52.17 - 91.35 - 62.48 - 98.14 - 

Neuba 42.15 82.7 85.30 68.80 49.10 65.09 94.30 19.62 

POR-2 43.10 99.41 85.50 99.64 50.01 100.00 96.05 100.00 

UOR 47.90 100.00 84.10 99.51 48.35 99.79 96.50 99.85 

BadEmd (UOR) 48.74 100.00 85.95 100.00 49.80 99.89 97.70 100.00 
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Table A3. Comparison under untargeted attacks for private user tasks. We compare BadEmb with baseline attacks 

to achieve untargeted attacks. The evaluation is conducted using the BERT LLEM model for private user tasks. 

Attacks 
SST5 AGNEWS Yahoo Dbpedia 

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) 

Clean 52.17 - 91.35 - 62.48 - 98.14 - 

BadEmd (UOR) 48.55 96.96 86.55 97.18 54.19 99.80 97.84 96.52 

Appendix E. Generalization Results 

We demonstrate that BadEmd attack can be generalized to any LLEM. We use the RoBERTa [19] model to 

train baseline methods in EaaS settings and compare it with our BadEmd. In Table A4, we observe that our attack 

maintains ASR while maintaining the CA. 

Table A4. Generalizability Evaluation. We compare the targeted backdoor attack using RoBERTa Model as 

LLEM. 

Attacks 
SST5 AGNEWS Yahoo Dbpedia 

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) 

Clean 48.45 - 93.48 - 65.80 - 98.31 - 

Neuba 48.45 24.46 84.50 25.34 50.80 8.47 91.35 5.62 

POR-2 43.55 80.65 86.95 78.69 47.90 67.19 94.85 61.10 

UOR 44.65 94.36 85.30 97.53 47.80 89.61 95.30 94.12 

BadEmd (UOR) 45.62 100.00 87.62 98.69 66.05 89.58 95.50 97.15 
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